26.09.2019

Внутренняя энергия тела больше. Внутренняя энергия тела. Изменение внутренней энергии: теплопередача


Их взаимодействия.

Внутренняя энергия входит в баланс энергетических превращений в природе. После открытия внутренней энергии был сформулирован закон сохранения и превращения энергии. Рассмотрим взаимное превращение механической и внутренней энергий. Пусть на свинцовой плите лежит свинцовый шар . Поднимем его вверх и отпустим. Когда мы подняли шар, то сообщили ему потен-циальную энергию. При падении шара она уменьшается, т. к. шар опускается все ниже и ниже. Но с увеличением скорости постепенно увеличивается кинетическая энергия шара. Происходит превращение потенциальной энергии шара в кинетическую. Но вот шар ударился о свинцовую плиту и остановился. И кинетическая, и потенциальная энергии его относительно плиты стали равными нулю. Рассматривая шар и плиту после удара, мы увидим, что их состояние изменилось: шар немного сплющился, и на плите образовалась небольшая вмятина; измерив же их температу-ру , мы обнаружим, что они нагрелись.

Нагрев означает увеличение средней кинетической энергии молекул тела. При деформации из-меняется взаимное расположение частиц тела, поэтому изменяется и их потенциальная энергия.

Таким образом, можно утверждать, что в результате удара шара о плиту происходит превращение механической энергии, которой обладал в начале опыта шар, во внутреннюю энергию тела.

Нетрудно наблюдать и обратный переход внутренней энергии в механическую.

Например, если взять толстостенный стеклянный сосуд и накачать в него воздух через отверстие в пробке, то спустя какое-то время пробка из сосуда вылетит. В этот момент в сосуде образуется туман. Появление тумана означает, что воздух в сосуде стал холоднее и, следовательно, его внут-ренняя энергия уменьшилась. Объясняется это тем, что находившийся в сосуде сжатый воздух, выталкивая пробку (т. е. расширяясь), совершил работу за счет уменьшения своей внутренней энергии. Кинетическая энергия пробки увеличилась за счет внутренней энергии сжатого воздуха.

Таким образом, одним из способов изменения внутренней энергии тела является работа, совершаемая молекулами тела (или другими телами) над данным телом. Способом изменения внут-ренней энергии без совершения работы является теплопередача .

Внутренняя энергия идеального одноатомного газа.

Поскольку молекулы идеального газа не взаимодействуют друг с другом, их потенциальная энергия считается равной нулю. Внутренняя энергия идеального газа определяется только кинетической энергией беспорядочного поступательного движения его молекул. Для ее вычисления нужно умножить среднюю кинетическую энергию одного атома на число атомов . Учитывая, что k N A = R , получим значение внутренней энергии идеального газа :

.

Внутренняя энергия идеального одноатомного газа прямо пропорциональна его температуре. Если воспользоваться уравнением Клапейрона-Менделеева , то выражение для внутренней энергии идеального газа можно представить в виде:

.

Следует отметить, что, согласно выражению для средней кинетической энергии одного атома и в силу хаотичности движения, на каждое из трех возможных направлений движения, или каждую степень свободы , по оси X , Y и Z приходится одинаковая энергия .

Число степеней свободы — это число возможных независимых направлений движения молекулы.

Газ, каждая молекула которого состоит из двух атомов, называется двухатомным. Каждый атом может двигаться по трем направлениям, поэтому общее число возможных направлений дви-жения — 6. За счет связи между молекулами число степеней свободы уменьшается на одну, по-этому число степеней свободы для двухатомной молекулы равно пяти .

Средняя кинетическая энергия двухатомной молекулы равна . Соответственно внутрен-няя энергия идеального двухатомного газа равна:

.

Формулы для внутренней энергии идеального газа можно обобщить:

.

где i — число степеней свободы молекул газа (i = 3 для одноатомного и i = 5 для двухатомного газа).

Для идеальных газов внутренняя энергия зависит только от одного макроскопического параметра — температуры и не зависит от объема, т. к. потенциальная энергия равна нулю (объем определяет среднее расстояние между молекулами).

Для реальных газов потенциальная энергия не равна нулю. Поэтому внутренняя энергия в тер-модинамике в общем случае однозначно определяется параметрами, характеризующими состоя-ние этих тел: объемом (V) и температурой (T) .

Если в закрытую пробкой толстостенную банку, дно которой покрыто водой, накачивать, то через какое-то время пробка из банки вылетит и в банке образуется туман. Пробка вылетела из банки, потому что находившийся там воздух действовал на неё с определённой силой. Воздух при вылете пробки совершил работу. Известно, что работу тело может совершить, если оно обладает энергией. Следовательно, воздух в банке обладает энергией.

При совершении воздухом работы понизилась его температура, изменилось его состояние. При этом механическая энергия воздуха не изменилась: не изменились ни его скорость, ни его положение относительно Земли. Следовательно, работа была совершена не за счёт механической, а за счёт другой энергии. Эта энергия - внутренняя энергия воздуха, находящегося в банке.

Внутренняя энергия тела – это сумма кинетической энергии движения его молекул и потенциальной энергии их взаимодействия. Кинетической энергией (Ек ) молекулы обладают, так как они находятся в движении, а потенциальной энергией (Еп ), поскольку они взаимодействуют. Внутреннюю энергию обозначают буквой U . Единицей внутренней энергии является 1 джоуль (1 Дж ). U = Eк + En.

Способы изменения внутренней энергии

Чем больше скорости движения молекул, тем выше температура тела, следовательно, внутренняя энергия зависит от температуры тела . Чтобы перевести вещество из твёрдого состояния в жидкое состояние, например, превратить лёд в воду, нужно подвести к нему энергию. Следовательно, вода будет обладать большей внутренней энергией, чем лёд той же массы, и, следовательно, внутренняя энергия зависит от агрегатного состояния тела .

Внутреннюю энергию можно изменить при совершении работы . Если по куску свинца несколько раз ударить молотком, то даже на ощупь можно определить, что кусок свинца нагреется. Следовательно, его внутренняя энергия, так же как и внутренняя энергия молотка, увеличилась. Это произошло потому, что была совершена работа над куском свинца.

Если тело само совершает работу, то его внутренняя энергия уменьшается, а если над ним совершают работу, то его внутренняя энергия увеличивается.

Если в стакан с холодной водой налить горячую воду, то температура горячей воды понизится, а холодной воды - повысится. В рассмотренном примере механическая работа не совершается, внутренняя энергия тел изменяется путём теплопередачи , о чем и свидетельствует понижение её температуры.

Молекулы горячей воды обладают большей кинетической энергией, чем молекулы холодной воды. Эту энергию молекулы горячей воды передают молекулам холодной воды при столкновениях, и кинетическая энергия молекул холодной воды увеличивается. Кинетическая энергия молекул горячей воды при этом уменьшается.

Самые часто задаваемые вопросы

Возможно ли, изготовить печать на документе по предоставленному образцу? Ответ Да, возможно. Отправьте на наш электронный адрес скан-копию или фото хорошего качества, и мы изготовим необходимый дубликат.

Какие виды оплаты вы принимаете? Ответ Вы можете оплатить документ во время получения на руки у курьера, после того, как проверите правильность заполнения и качество исполнения диплома. Также это можно сделать в офисе почтовых компаний, предлагающих услуги наложенного платежа.
Все условия доставки и оплаты документов расписаны в разделе «Оплата и доставка». Также готовы выслушать Ваши предложения по условиям доставки и оплаты за документ.

Могу ли я быть уверена, что после оформления заказа вы не исчезнете с моими деньгами? Ответ В сфере изготовления дипломов у нас достаточно длительный опыт работы. У нас есть несколько сайтов, который постоянно обновляются. Наши специалисты работают в разных уголках страны, изготавливая свыше 10 документов день. За годы работы наши документы помогли многим людям решить проблемы трудоустройства или перейти на более высокооплачиваемую работу. Мы заработали доверие и признание среди клиентов, поэтому у нас совершенно нет причин поступать подобным образом. Тем более, что это просто невозможно сделать физически: Вы оплачиваете свой заказ в момент получения его на руки, предоплаты нет.

Могу я заказать диплом любого ВУЗа? Ответ В целом, да. Мы работаем в этой сфере почти 12 лет. За это время сформировалась практически полная база выдаваемых документов почти всех ВУЗов страны и за разные года выдачи. Все, что Вам нужно – выбрать ВУЗ, специальность, документ, и заполнить форму заказа.

Что делать при обнаружении в документе опечаток и ошибок? Ответ Получая документ у нашего курьера или в почтовой компании, мы рекомендуем тщательно проверить все детали. Если будет обнаружена опечатка, ошибка или неточность, Вы имеете право не забирать диплом, при этом нужно указать обнаруженные недочеты лично курьеру или в письменном виде, отправив письмо на электронную почту.
В кратчайшие сроки мы исправим документ и повторно отправим на указанный адрес. Разумеется, пересылка будет оплачена нашей компанией.
Чтобы избежать подобных недоразумений, перед тем, как заполнять оригинальный бланк, мы отправляем на почту заказчику макет будущего документа, для проверки и утверждения окончательного варианта. Перед отправкой документа курьером или почтой мы также делаем дополнительное фото и видео (в т. ч. в ультрафиолетовом свечении), чтобы Вы имели наглядное представление о том, что получите в итоге.

Что нужно сделать, чтобы заказать диплом в вашей компании? Ответ Для заказа документа (аттестата, диплома, академической справки и др.) необходимо заполнить онлайн-форму заказа на нашем сайте или сообщить свою электронную почту, чтобы мы выслали вам бланк анкеты, который нужно заполнить и отправить обратно нам.
Если вы не знаете, что указать в каком-либо поле формы заказа/анкеты, оставьте их незаполненными. Всю недостающую информацию мы потому уточним в телефонном режиме.

Последние отзывы

Олег:

Учился на программиста, устроился на работу в организацию, которая являлась провайдером интернет-услуг. Пока был холостяком, жил с родителями, моей зарплаты мне было достаточно. В 25 лет встретил девушку, женился. Детки один за другим родились. Моей зарплаты едва хватало на пропитание. С женой решили, что надо что-то менять. Решили, что нужно освоить новую профессию за рубежом. Нашел в интернете ваши услуги. Заказал диплом. Поехал в другую страну, устроился, получаю хорошее вознаграждение. Купил автомобиль престижный. Ребята, дай вам Бог здоровья!

Ольга:

Я училась на заочном отделении в высшем учебном заведении. Когда получила диплом, надеялась сразу устроиться на престижную работу. Но конкуренция оказалась очень высокая, на одно место претендовало более десяти человек. Пришлось согласиться на работу не по специальности с минимальной оплатой. Работала так уже много лет. Решилась на перемены. Обратилась к вашей фирме за услугой по изготовлению профильного диплома. Изменила род деятельности, очень рада, что так получилось. Спасибо вам, ребята!

Эдуард:

Никогда не было доверия к подобным компаниям, но мои сомнения развеялись, когда сам решил обратиться. К сожалению, из-за несчастного случая потерял почти все документы, среди них был и диплом, а без него даже на работу не устроиться. Чтобы не тратить время на восстановление документа, решил проверить работу данной компании. Позвонил по указанному номеру и заказал. Диплом получил в указанный срок. Качество порадовало, сходство с оригиналом на все 100%.

Ирина:

Добрый вечер, благодарю за работу! Осталась довольна качеством документов. Когда я пришла на работу после покупки диплома, то увидела, что у начальницы документ того же вуза! Испугалась сильно, оказалось, она не проверяет документацию по базе, а сравнивает со своим (печати, подписи). Каким же было мое удивление, когда она даже не заметила ничего подозрительного. Если начальница поверила, то теперь можно других проверок не бояться. Спасибо вам огромное.

Максим:

Покупал тут диплом, даже не думал, что он окажется такого отличного качества. Доставили меньше чем за 5 дней. Все данные написаны без ошибок, по базе данных проходит. Также хочу поблагодарить за оперативность, менеджер очень быстро со мной связался, учел все мои пожелания. Работа выполнена идеально – так как мне и нужно, благодарю компанию за отличную работу!

Рита:

На работе срочно понадобился диплом, чтобы пойти на повышение. На предоставление диплома о высшем образовании у меня была всего неделя. Единственный выход для меня был – купить диплом. Менеджер сразу отозвался, уточнил всю информацию, через четыре дня диплом был у меня в руках. Очень волновалась о том, будет ли выполнена работа качественно. Получала на почте, оплатила там же, так что никаких рисков. Осталась довольна, все как в оригинале, спасибо.

Термодинамика как дисциплина сформировалась к середине 19-го столетия. Это произошло после открытия закона о сохранении энергии. Существует определенная связь между термодинамикой и молекулярной кинетикой. Какое место в теории занимает внутренняя энергия? Рассмотрим это в статье.

Статистическая механика и термодинамика

Исходной научной теорией о тепловых процессах стала не молекулярно-кинетическая. Первой была термодинамика. Она сформировалась в процессе изучения оптимальных условий применения теплоты для осуществления работы. Это случилось в середине 19-го столетия, до того как молекулярная кинетика получила признание. На сегодняшний день в технике и науке применяется как термодинамика, так и молекулярно-кинетическая теория. Последняя в теоретической физике именуется статистической механикой. Она наряду с термодинамикой исследует с применением различных методов одинаковые явления. Эти две теории взаимно дополняют друг друга. Основа термодинамики составлена двумя ее законами. Оба они касаются поведения энергии и установлены опытным путем. Законы эти справедливы для любого вещества вне зависимости от внутреннего строения. Более глубокой и точной наукой считается статистическая механика. По сравнению с термодинамикой она представляет большую сложность. Ее применяют в том случае, когда термодинамические соотношения оказываются недостаточными для объяснения исследуемых явлений.

Молекулярно-кинетическая теория

К середине 19-го века было доказано, что наряду с механической существует и внутренняя энергия макроскопических тел. Она входит в баланс энергетических природных превращений. После того как была открыта внутренняя энергия, было сформулировано положение о ее сохранении и превращении. В то время как шайба, скользящая по льду, останавливается под воздействием силы трения, ее кинетическая (механическая) энергия не просто перестает существовать, но и передается молекулам шайбы и льда. При движении неровности поверхностей тел, подвергающихся трению, деформируются. При этом интенсивность движущихся беспорядочно молекул возрастает. При нагревании обоих тел возрастает внутренняя энергия. Нетрудно пронаблюдать и обратный переход. При нагревании воды в закрытой пробирке внутренняя энергия (и ее, и образующегося пара) начинает возрастать. Давление увеличится, в результате чего пробка будет вытеснена. Внутренняя энергия пара станет причиной увеличения кинетической энергии. В процессе расширения пар совершает работу. При этом его внутренняя энергия уменьшается. В итоге происходит охлаждение пара.

Внутренняя энергия. Общая информация

При беспорядочном движении всех молекул сумма их кинетических энергий, а также потенциальных энергий их взаимодействий составляет внутреннюю энергию. Учитывая положение молекул относительно друг друга и их движение, вычислить эту сумму практически невозможно. Это обусловлено огромным количеством элементов в макроскопических телах. В связи с этим необходимо уметь вычислять значение в соответствии с макроскопическими параметрами, которые можно измерить.

Одноатомный газ

Вещество считается достаточно простым по своим свойствам, поскольку состоит из отдельных атомов, а не молекул. К одноатомным газам относят аргон, гелий, неон. Потенциальная энергия в данном случае равна нулю. Это обусловлено тем, что молекулы в идеальном газе друг с другом не взаимодействуют. Кинетическая энергия беспорядочного молекулярного движения является определяющей для внутренней (U). Для того чтобы вычислить U одноатомного газа массой m, нам необходимо произвести умножение кинетической энергии (средней) 1-го атома на общее число всех атомов. Но при этом нужно учитывать, что kNA=R. Исходя из имеющихся у нас данных, мы получаем следующую формулу: U= 2/3 х m/M х RT, где внутренняя энергия прямо пропорциональна абсолютной температуре. Все изменения U определяются только T (температурой), замеренной в изначальном и итоговом состоянии газа, и не имеют прямого отношения к объему. Это связано с тем, что взаимодействия его потенциальной энергии равны 0, и уж вовсе не зависят от других системных параметров макроскопических объектов. При наличии более сложных молекул идеальный газ также будет иметь внутреннюю энергию, прямо пропорциональную абсолютной температуре. Но, надо сказать, при этом между U и T коэффициент пропорциональности изменится. Ведь сложные молекулы выполняют не только поступательные движения, но и вращательные. Внутренняя энергия равна сумме этих движений молекул.

От чего зависит U?

Внутренняя энергия находится под влиянием одного из макроскопических параметров. Это температура. У реальных газов, жидких и твердых тел потенциальная энергия (средняя) при взаимодействии молекул не равняется нулю. Хотя, если рассмотреть точнее, для газов она много меньше кинетической (средней же). При этом для твердых и жидких тел - сравнима с ней. А вот средняя U зависит от V вещества, потому что в период его изменения меняется и среднее расстояние, которое есть между молекулами. Из этого следует, что в термодинамике внутренняя энергия зависит не только от температуры T, но и от V (объема). Их значение однозначно определяет состояние тел, а значит и U.

Мировой океан

Сложно представить, какие невероятно большие запасы энергии содержит в себе Мировой океан. Рассмотрим, что собой представляет внутренняя энергия воды. Надо отметить, что она же является тепловой, потому что образовалась в результате перегрева жидкой части поверхности океана. Так вот, имея разницу, к примеру, в 20 градусов по отношению к донной воде, она приобретает значение около 10^26 Дж. При измерении течений в океане его кинетическая энергия оценивается величиной около 10^18 Дж.

Глобальные проблемы

Существуют глобальные проблемы, которые можно поставить на мировой уровень. К ним относят:

Истощение запасов ископаемого топлива (в первую очередь нефти и газа);

Значительное загрязнение окружающей среды, связанное с использованием этих ископаемых;

Тепловое "загрязнение", плюс ко всему повышение концентрации атмосферной углекислоты, грозящее глобальными климатическими нарушениями;

Использование урановых запасов, приводящих к появлению радиоактивных отходов, которые весьма негативно сказываются на жизнедеятельности всего живого;

Использование термоядерной энергии.

Заключение

Вся эта неопределенность касательно ожидания последствий, которые непременно настанут, если не перестать потреблять энергию, добытую такими способами, заставляет ученых и инженеров уделять практически все свое внимание решению этой проблемы. Их главной задачей является поиск оптимального источника энергии, Немаловажно и задействование различных природных процессов. Среди них наибольший интерес представляют: солнце, вернее солнечное тепло, ветер и энергия в Мировом океане.

Во многих странах моря и океаны давно рассматривают как источник энергии, и их перспективы становятся все более многообещающими. Океан таит в себе немало тайн, его внутренняя энергия - это бездонный кладезь возможностей. Одно только то, сколько способов извлечения энергии он нам предоставляет (таких как океанские течения, энергия приливов и отливов, термальная энергия и другие), уже заставляет задуматься о его величии.

Темы кодификатора ЕГЭ : внутренняя энергия, теплопередача, виды теплопередачи.

Частицы любого тела - атомы или молекулы - совершают хаотическое непрекращающееся движение (так называемое тепловое движение ). Поэтому каждая частица обладает некоторой кинетической энергией.

Кроме того, частицы вещества взаимодействуют друг с другом силами электрического притяжения и отталкивания, а также посредством ядерных сил. Стало быть, вся система частиц данного тела обладает ещё и потенциальной энергией.

Кинетическая энергия теплового движения частиц и потенциальная энергия их взаимодействия вместе образуют новый вид энергии, не сводящийся к механической энергии тела (т.е. кинетической энергии движения тела как целого и потенциальной энергии его взаимодействия с другими телами). Этот вид энергии называется внутренней энергией.

Внутренняя энергия тела - это суммарная кинетическая энергия теплового движения его частиц плюс потенциальная энергия их взаимодействия друг с другом .

Внутренняя энергия термодинамической системы - это сумма внутренних энергий тел, входящих в систему .

Таким образом, внутреннюю энергию тела образуют следующие слагаемые.

1. Кинетическая энергия непрерывного хаотического движения частиц тела.
2. Потенциальная энергия молекул (атомов), обусловленная силами межмолекулярного взаимодействия.
3. Энергия электронов в атомах.
4. Внутриядерная энергия.

В случае простейшей модели вещества - идеального газа - для внутренней энергии можно получить явную формулу.

Внутренняя энергия одноатомного идеального газа

Потенциальная энергия взаимодействия частиц идеального газа равна нулю (напомним, что в модели идеального газа мы пренебрегаем взаимодействием частиц на расстоянии). Поэтому внутренняя энергия одноатомного идеального газа сводится к суммарной кинетической энергии поступательного (у многоатомного газа приходится ещё учитывать вращение молекул и колебания атомов внутри молекул) движения его атомов. Эту энергию можно найти, умножив число атомов газа на среднюю кинетическую энергию одного атома:

Мы видим, что внутренняя энергия идеального газа (масса и химический состав которого неизменнны) является функцией только его температуры. У реального газа, жидкости или твёрдого тела внутренняя энергия будет зависеть ещё и от объёма - ведь при изменении объёма изменяется взаимное расположение частиц и, как следствие, потенциальная энергия их взаимодействия.

Функция состояния

Важнейшее свойство внутренней энергии заключается в том, что она является функцией состояния термодинамической системы. А именно, внутренняя энергия однозначно определяется набором макроскопических параметров, характеризующих систему, и не зависит от «предыстории» системы, т.е. от того, в каком состоянии система находилась прежде и каким конкретно образом она оказалась в данном состоянии.

Так, при переходе системы из одного состояния в другое изменение её внутренней энергии определяется лишь начальным и конечным состояниями системы и не зависит от пути перехода из начального состояния в конечное. Если система возвращается в исходное состояние, то изменение её внутренней энергии равно нулю.

Опыт показывает, что существует лишь два способа изменения внутренней энергии тела:

Совершение механической работы;
теплопередача.

Попросту говоря, нагреть чайник можно только двумя принципиально разными способами: тереть его чем-нибудь или поставить на огонь:-) Рассмотрим эти способы подробнее.

Изменение внутренней энергии: совершение работы

Если работа совершается над телом, то внутренняя энергия тела возрастает.

Например, гвоздь после удара по нему молотком нагревается и немного деформируется. Но температура - это мера средней кинетической энергии частиц тела. Нагревание гвоздя свидетельствует об увеличении кинетической энергии его частиц: в самом деле, частицы разгоняются от удара молотком и от трения гвоздя о доску.

Деформация же есть не что иное, как смещение частиц друг относительно друга; гвоздь после удара испытывает деформацию сжатия, его частицы сближаются, между ними возрастают силы отталкивания, и это приводит к увеличению потенциальной энергии частиц гвоздя.

Итак, внутренняя энергия гвоздя увеличилась. Это явилось результатом совершения над ним работы - работу совершили молоток и сила трения о доску.

Если же работа совершается самим телом, то внутренняя энергия тела уменьшается.

Пусть, например, сжатый воздух в теплоизолированном сосуде под поршнем расширяется и поднимает некий груз, совершая тем самым работу (процесс в теплоизолированном сосуде называется адиабатным . Мы изучим адиабатный процесс при рассмотрении первого закона термодинамики). В ходе такого процесса воздух будет охлаждаться - его молекулы, ударяя вдогонку по движущемуся поршню, отдают ему часть своей кинетической энергии. (Точно так же футболист, останавливая ногой быстро летящий мяч, делает ею движение от мяча и гасит его скорость.) Стало быть, внутренняя энергия воздуха уменьшается.

Воздух, таким образом, совершает работу за счёт своей внутренней энергии: поскольку сосуд теплоизолирован, нет притока энергии к воздуху от каких-либо внешних источников, и черпать энергию для совершения работы воздух может только из собственных запасов.

Изменение внутренней энергии: теплопередача

Теплопередача - это процесс перехода внутренней энергии от более горячего тела к более холодному, не связанный с совершением механической работы . Теплопередача может осуществляться либо при непосредственном контакте тел, либо через промежуточную среду (и даже через вакуум). Теплопередача называется ещё теплообменом .

Различают три вида теплопередачи: теплопроводность, конвекция и тепловое излучение.

Сейчас мы рассмотрим их более подробно.

Теплопроводность

Если железный стержень сунуть одним концом в огонь, то, как мы знаем, долго его в руке не продержишь. Попадая в область высокой температуры, атомы железа начинают колебаться интенсивнее (т.е. приобретают добавочную кинетическую энергию) и наносят более сильные удары по своим соседям.

Кинетическая энергия соседних атомов также возрастает, и теперь уже эти атомы сообщают дополнительную кинетическую энергию своим соседям. Так от участка к участку тепло постепенно распространяется по стержню - от помещённого в огонь конца до нашей руки. Это и есть теплопроводность (рис. 1 )(Изображение с сайта educationalelectronicsusa.com).

Рис. 1. Теплопроводность

Теплопроводность - это перенос внутренней энергии от более нагретых участков тела к менее нагретым за счёт теплового движения и взаимодействия частиц тела .

Теплопроводность разных веществ различна. Высокую теплопроводность имеют металлы: лучшими проводниками тепла являются серебро, медь и золото. Теплопроводность жидкостей гораздо меньше. Газы проводят тепло настолько плохо, что относятся уже к теплоизоляторам: молекулы газов из-за больших расстояний между ними слабо взаимодействуют друг с другом. Вот почему, например, в окнах делают двойные рамы: прослойка воздуха препятствует уходу тепла).

Плохими проводниками тепла являются поэтому пористые тела - такие, как кирпич, вата или мех. Они содержат в своих порах воздух. Недаром кирпичные дома считаются самыми тёплыми, а в мороз люди надевают меховые шубы и куртки с прослойкой пуха или синтепона.

Но если воздух так плохо проводит тепло, то почему тогда прогревается от батареи комната?

Происходит это вследствие другого вида теплопередачи - конвекции.

Конвекция

Конвекция - это перенос внутренней энергии в жидкостях или газах в результате циркуляции потоков и перемешивания вещества .

Воздух вблизи батареи нагревается и расширяется. Действующая на этот воздух сила тяжести остаётся прежней, а выталкивающая сила со стороны окружающего воздуха увеличивается, так что нагретый воздух начинает всплывать к потолку. На его место приходит холодный воздух (тот же процесс, но в куда более грандиозных масштабах, постоянно происходит в природе: именно так возникает ветер), с которым повторяется то же самое.

В результате устанавливается циркуляция воздуха, которая и служит примером конвекции - распространение тепла в комнате осуществляется воздушными потоками.

Совершенно аналогичный процесс можно наблюдать и в жидкости. Когда вы ставите на плиту чайник или кастрюлю с водой, нагревание воды происходит в первую очередь благодаря конвекции (вклад теплопроводности воды тут весьма незначителен).

Конвекционные потоки в воздухе и жидкости показаны на рис. 2 (изображения с сайта physics.arizona.edu).

Рис. 2. Конвекция

В твёрдых телах конвекция отсутствует: силы взаимодействия частиц велики, частицы колеблются вблизи фиксированных пространственных точек (узлов кристаллической решётки), и никакие потоки вещества в таких условиях образоваться не могут.

Для циркуляции конвекционных потоков при отоплении комнаты необходимо, чтобы нагретому воздуху было куда всплывать . Если радиатор установить под потолком, то никакая циркуляция не возникнет - тёплый воздух так под потолком и останется. Именно поэтому нагревательные приборы помещают внизу комнаты. По той же причине чайник ставят на огонь, в результате чего нагретые слои воды, поднимаясь, уступают место более холодным.

Наоборот, кондиционер нужно располагать как можно выше: тогда охлаждённый воздух начнёт опускаться, и на его место будет приходить более тёплый. Циркуляция пойдёт в обратном направлении по сравнению с движением потоков при обогреве комнаты.

Тепловое излучение

Каким образом Земля получает энергию от Солнца? Теплопроводность и конвекция исключены: нас разделяет 150 миллионов километров безвоздушного пространства.

Здесь работает третий вид теплопередачи - тепловое излучение . Излучение может распространяться как в веществе, так и в вакууме. Как же оно возникает?

Оказывается, электрическое и магнитное поля тесно связаны друг с другом и обладают одним замечательным свойством. Если электрическое поле изменяется со временем, то оно порождает магнитное поле, которое, вообще говоря, также изменяется со временем (подробнее об этом будет рассказано в листке про электромагнитную индукцию). В свою очередь переменное магнитное поле порождает переменное электрическое поле, которое опять порождает переменное магнитное поле, которое опять порождает переменное электрическое поле...

В результате развития этого процесса в пространстве распространяется электромагнитная волна -«зацепленные» друг за друга электрическое и магнитное поля. Как и звук, электромагнитные волны обладают скоростью распространения и частотой - в данном случае это частота, с которой колеблются в волне величины и направления полей. Видимый свет - частный случай электромагнитных волн.

Скорость распространения электромагнитных волн в вакууме огромна: км/с. Так, от Земли до Луны свет идёт чуть больше секунды.

Частотный диапазон электромагнитных волн очень широк. Подробнее о шкале электромагнитных волн мы поговорим в соответствующем листке. Здесь отметим лишь, что видимый свет - это крохотный диапазон данной шкалы. Ниже него лежат частоты инфракрасного излучения, выше - частоты ультрафиолетового излучения.

Вспомним теперь, что атомы, будучи в целом электрически нейтральными, содержат положительно заряженные протоны и отрицательно заряженные электроны. Эти заряженные частицы, совершая вместе с атомами хаотическое движение, создают переменные электрические поля и тем самым излучают электромагнитные волны. Эти волны и называются тепловым излучением - в напоминание о том, что их источником служит тепловое движение частиц вещества.

Источником теплового излучения является любое тело. При этом излучение уносит часть его внутренней энергии. Встретившись с атомами другого тела, излучение разгоняет их своим колеблющимся электрическим полем, и внутренняя энергия этого тела увеличивается. Именно так мы и греемся в солнечных лучах.

При обычных температурах частоты теплового излучения лежат в инфракрасном диапазоне, так что глаз его не воспринимает (мы не видим, как мы «светимся»). При нагревании тела его атомы начинают излучать волны более высоких частот. Железный гвоздь можно раскалить докрасна - довести до такой температуры, что его тепловое излучение выйдет в нижнюю (красную) часть видимого диапазона. А Солнце кажется нам жёлто-белым: температура на поверхности Солнца настолько высока , что в спектре его излучения присутствуют все частоты видимого света, да ещё ультрафиолет, благодаря которому мы загораем.

Давайте ещё раз взглянем на три вида теплопередачи (рис. 3 )(изображения с сайта beodom.com).

Рис. 3. Три вида теплопередачи: теплопроводность, конвекция и излучение


© 2024
colybel.ru - О груди. Заболевания груди, пластическая хирургия, увеличение груди