11.10.2019

Виды энергии и их преобразование. Способы преобразования энергии. Способы получения и преобразования энергии


    Электротехническое изделие (устройство), преобразующее электрическую энергию с одними значениями параметров и (или) показателей качества в электрическую энергию с другими значениями параметров и (или) показателей качества. Примечание.… …

    Преобразователь электрической энергии - 4. Преобразователь электрической энергии Converter Преобразователь электроэнергии Электротехническое изделие (устройство), преобразующее электрическую энергию с одними значениями параметров и (или) показателей качества в электрическую энергию с… …

    преобразователь электрической энергии, - 2 преобразователь электрической энергии, преобразователь электроэнергии: Электротехническое устройство, преобразующее электрическую энергию с одними значениями параметров и/или показателей качества в электрическую энергию с другими значениями… … Словарь-справочник терминов нормативно-технической документации

    Преобразователь электрической энергии - – электротехническое изделие (устройство), преобразующее электрическую энергию с одними значениями параметров и (или) показателей качества в электрическую энергию с другими значениями параметров и (или) показателей качества. ГОСТ 18311 80 … Коммерческая электроэнергетика. Словарь-справочник

    Преобразователь электрической энергии - 1. Электротехническое изделие (устройство), преобразующее электрическую энергию с одними значениями параметров и (или) показателей качества в электрическую энергию с другими значениями параметров и (или) показателей качества Употребляется в… … Телекоммуникационный словарь

    Преобразователь электрической энергии (Преобразователь электроэнергии) - English: Electricity converter Электротехническое изделие (устройство), преобразующее электрическую энергию с одними значениями параметров и (или) показателей качества в электрическую энергию с другими значениями параметров и (или) показателей… … Строительный словарь

    ГОСТ Р 54130-2010: Качество электрической энергии. Термины и определения - Терминология ГОСТ Р 54130 2010: Качество электрической энергии. Термины и определения оригинал документа: Amplitude die schnelle VergroRerung der Spannung 87 Определения термина из разных документов: Amplitude die schnelle VergroRerung der… … Словарь-справочник терминов нормативно-технической документации

    Преобразователи тепловой энергии плазмы в электрич. энергию. Существуют два типа П. и. э. э. магнитогидродинамический генератор и термоэлектронный преобразователь. Физический энциклопедический словарь. М.: Советская энциклопедия. Главный редактор … Физическая энциклопедия

    Преобразователи тепловой энергии плазмы (См. Плазма) в электрическую энергию. Существует 2 типа П. и. э. э. Магнитогидродинамический генератор и Термоэлектронный преобразователь … Большая советская энциклопедия

    преобразователь частоты - преобразователь частоты Преобразователь электрической энергии переменного тока, который преобразует электрическую энергию с изменением частоты [ОСТ 45.55 99] EN frequency converter electric energy… … Справочник технического переводчика

Энергия, от греческого слова energeia – деятельность или действие, - общая мера различных видов движения и взаимодействия.

Энергия – это количественная мера действия и взаимодействия всех видов материи.

Виды энергии: механическая, электрическая, тепловая, магнитная, атомная.

Кинетическая энергия – результат изменения состояния движения материальных тел.

Потенциальная энергия – результат изменения положения частей данной системы.

Механическая энергия - это энергия, связанная с движением объекта или его положением, способность совершать механическую работу.

Электроэнергия энергия – одна из совершенных видов энергии.

Ее широкое применение обусловленно следующими факторами:

· Получение в больших количествах вблизи месторождения ресурсов и водных источнков;

· Возможность транспортировки на дальние расстояния с относительно небольшими потерями;

· Способность трансформации в другие виды энергии: механическую, химическую, тепловую, световую;

· Отсутствие загрязнения окружающей среды;

· Внедрением на основе электроэнергии принципиально новых прогрессивных технологических процессов с высокой степенью автоматизации.

В последнее время, в связи с экологическими проблемами, дефицитом ископаемого топлива и его неравномерным географическим распределением, становится целесообразным вырабатывать электроэнергию используя ветроэнергетические установки, солнечные батареи, малые газогенераторы.

Тепловая энергия широко используется на современных производствах и в быту в виде энергии пара, горячей воды, продуктов сгорания топлива.

Преобразование первичной энергии во вторичную осуществляется на станциях:

· На тепловой электрической станции ТЭС – тепловая;

· Гидроэлектростанции ГЭС – механическая (энергия движения воды);

· Гидроаккумулирующая станция ГАЭС – механическая (энергия движения предварительно наполненной в искусственном водоеме воды);

· Атомная электростанция АЭС – атомная (энергия ядерного топлива);

· Приливной электростанции ПЭС – приливов.

В РБ более 95% энергии вырабатывается на ТЭС, которые по назначению делятся на два типа:

1. Конденсационные тепловые электростанции КЭС, преднозначены для выработки только электрической энергии;

2. Теплоэлектроцентрали ТЭЦ, на которых осуществляется комбинированное производство электрической и тепловой энергии.

Способы получения и преобразования энергии.

Механическая энергия преобразуется в тепловую – трением, в химическую – путем разрушения структуры вещества, сжатия, в электрическую – путем изменения электромагнитного поля генератора.

Тепловая энергия преобразуется в химическую, в кинетическую энергию движения, а эта – в механическую (турбина), в электрическую (термо э.д.с.)



Химическая энергия может быть преобразована в механическую (взрыв), в тепловую (тепло реакции), в электрическую (батарейки).

Электрическая энергия может быть преобразована в механическую (электромотор), в химическую (электролиз), в электромагнитную (электромагнит).

Электромагнитная энергия – энергия Солнца – в тепловую (нагрев воды), в электрическую (фотоэффект → гелиоэнергетика), в механическую (звонок телефона).

Ядерная энергия → в химическую, тепловую, механическую (взрыв), регулируемое деление (реактор) → химическая + тепловая.

ТЭС включает комплект оборудования, в котором внутренняя химическая энергия топлива превращается в тепловую энергию воды и пара, преобразующуюся в ме-ханическую энергию вращения, которая и вырабатывает электрическую энергию.

Поступающие со склада (С) в парогенератор(ПГ) топливо при сжигании выделяет тепловую энергию, которая нагревая подведенную с водозабора(ВЗ)воду, преобразует ее в энергию водяного пара с температурой 550. В турбине энергия водяного пара превращается в механическую энергию вращения, передающуюся на генератор(Г), который превращает ее в электрическую. В конденсаторе пара(К) отработанный пар с температурой 123-125отдает скрытую теплоту парообразования охлаждающей его воде и с помощью циркулярного насоса(Н) в виде конденсатора вновь подается в котел-паронагнетатель.

Схема ТЭЦ отличается от ТЭС тем, что взамен конденсатора устанавливается теплообменник, где пар при значительном давлении нагревает воду подаваемую в главные тепловые магистрали.

АЭС

Схема АЭС зависят от типа реактора; вида теплоносителя; состава оборудования и могут быть одно-, двух-, и трехконтурными.

Одноконтурный АЭС.

Пар отрабатывается непосредственно в реакторе и поступает в паровую турбину. Отработанный пар конденсируются в конденсаторе, и конденсат подается насосом в реактор. Схема проста, экономична. Однако пар на выходе из реактора становится радиоактивным, что предъявляет повышенные требования к биологической защите и затрудняет проведение контроля и ремонта оборудования.

1-атомный реактор;

2-турбина;

3-электрогенератор;

4-конденсатор водяных паров;

5-питательный насос.

Отличие ТЭС от АЭС состоит в том, что источником теплоты на ТЭС является паровой котел, в котором сжигается органическое топливо; на АЭС – ядерный реактор, теплота в котором выделяется делением ядерного топлива, обладающей высокой теплотворной способностью.

Транспортирование тепловой и электрической энергии.

Транспортирование тепловой энергии.

Основными потребителями тепловой энергии являются промышленные предприятиями и жилищно-коммунальное хозяйство.

Системой теплоснабжения называется комплекс устройств по выроботке, транспортировке и использования теплоты.

Снабжение тепловой энергии потребителей(система отопления, вентиляция, горячего водоснабжения и технологических процессов) состоит из 3-х взаимосвязанных процессов: передачи теплоты теплоносителю, транспортировки теплоносителя и использования теплового потенциала теплоносителя. Системы теплоснабжения могут быть децентрализованными(местными) и централизованными.

Децентрализованные системы теплоснабжения – это системы, в которых 3 основных звена объединены и находятся в одном или смежных помещениях. При этом получение теплоты и передача ее воздуха помещения объединены в одном устройстве и расположены в отапливаемых помещениях.

Централизованные системы теплоснабжения – это системы, в которых от одного источника теплоты подается теплота для многих зданий, кварталов, районов.

Транспортирование тепловой энергии производится тепловыми сетями.

Основными элементами тепловых сетей являются трубопровод, изоляционная конструкция, несущая конструкция.

Прокладка трубопроводов производится надземными и подземными способами.

Транспортирование электрической энергии.

Передача электроэнергии от предприятий, вырабатывающих электроэнергию, непосредственным потребителям осуществляется с помощью электрических сетей, представляющих собой совокупность подстанций(повысительных и понизительных), распределительных устройств и соединяющих их электрических линий(воздушных или кабельных), размещенных на территории района, населенного пункта, потребителя электрической энергии.

К основному оборудованию, производящему и распределяющему электроэнергию, относится:

· Синхронные генераторы, вырабатывающие электроэнергию(на ТЭС - турбогенераторы);

· Сборные шины, принимающие электроэнергию от генераторов и распределяющие ее потребителям;

· Коммутационные аппараты-выключатели, включающие и отключающие цепи в нормальных и аварийных условиях, и разъединители, снимающие напряжения с обеспеченных частей электроустановок и создающие видимый разрыв цепи;

· Электроприемники собственных нужд(насосы, вентиляторы, аварийное электрическое освещение и т.д.).

Вспомогательное оборудование предназначено для выполнения функций измерения, сигнализации, защиты и автоматики и т.д.

Генераторные установки вырабатывают однофазный или трехфазный ток промышленный частоты, а химические источники - постоянный. При этом на практике довольно часто возникают ситуации, когда одного вида электроэнергии недостаточно для работы определенных устройств и требуется выполнять ее преобразование.

С этой целью промышленностью выпускается большое количество электротехнических устройств, которые оперируют с разными параметрами электрической энергии, превращая их из одного вида в другой с различными напряжениями, частотой, количеством фаз и формами сигналов. По выполняемым функциям они подразделяются на устройства преобразования:

    простые;

    с возможностью регулирования выходного сигнала;

    наделенные способностью стабилизации.

Способы классификации

По характеру выполняемых операций преобразователи делят на устройства:

    выпрямления;

    инвертирования в один или несколько этапов;

    изменения частоты сигнала;

    преобразования числа фаз электрической системы;

    модификации вида напряжения.

По способам управления происходящих алгоритмов регулируемые преобразователи работают на:

    импульсном принципе, используемом в схемах постоянного тока;

    фазовом методе, применяемом в цепях гармоничных колебаний.

Самые простые конструкции преобразователей могут не наделяться функцией управления.

Все устройства преобразования могут использовать один из следующих видов электрической схемы:

    мостовую;

    нулевую;

    на основе трансформатора или без него;

    с одной, двумя, тремя или несколькими фазами.

Выпрямительные устройства

Это наиболее распространенный и старый класс преобразователей, позволяющих получать выпрямленный или стабилизированный постоянный ток из переменного синусоидального обычно промышленной частоты.

Раритетные экспонаты

Маломощные устройства

Буквально несколько десятилетий назад в радиотехнических и электронных устройствах еще использовались селеновые конструкции и ламповые на основе вакуума приборы.


В основе подобных устройств использовался принцип выпрямления тока одним единичным элементом из селеновой пластины. Их последовательно собирали в единую конструкцию через монтажные переходники. Чем выше требовалось напряжение для выпрямления, тем большее количество таких элементов использовалось. Они не отличались большими мощностями и выдерживали нагрузку в несколько десятков миллиампер.


У ламповых выпрямителей внутри герметичного стеклянного корпуса создавался вакуум. В нем располагались электроды: анод и катод с нитью накала, обеспечивающей протекание термоэлектронной эмиссии.

Подобный ламповые приборы обеспечивали питание постоянным током для различных схем радиоприемников и телевизоров вплоть до конца прошлого столетия.

Игнитроны - мощные устройства

В промышленных устройствах раньше широко использовались ионные ртутные приборы с анодом и катодом, работающие по принципу управляемого дугового заряда. Они применялись там, где требовалось оперировать нагрузкой постоянного тока с силой в сотни ампер при выпрямленном напряжении до пяти киловольт включительно.


Для протекания тока от катода в направлении анода использовался поток электронов. Он создавался за счет дугового разряда, вызываемого на одном или нескольких участках катода, называемых светящимися катодными пятнами. Они формировались при включении вспомогательной дуги от поджигающего электрода до момента зажигания основной.

Для этого создавались кратковременные импульсы в несколько миллисекунд с силой тока до десятков ампер. Изменение формы и силы импульсов позволяло управлять работой игнитрона.

Эта конструкция обеспечивала хорошее поддержание напряжения при выпрямлении и довольно высокий КПД. Но, техническая сложность конструкции и трудности эксплуатации привели к отказу от ее использования.

Полупроводниковые приборы

Диоды

В основу их работы положен принцип проводимости тока в одну сторону за счет свойств p-n перехода, образованного контактами между полупроводниковыми материалами или металлом и полупроводником.


Диоды пропускают ток только определенного направления, а при прохождении через них переменной синусоидальной гармоники срезают одну полуволну и за счет этого широко используются как выпрямительные устройства.

Современные диоды выпускаются очень широким ассортиментом и наделяются разнообразными техническими характеристиками.

Тиристоры

В составе тиристора используется четыре слоя проводимости, образующих более сложную полупроводниковую структуру, чем у диода с тремя последовательно соединенными p-n переходами J1, J2, J3. Контакты с внешним слоем «p» и «n» используются в качестве анода и катода, а с внутренним - как управляющий электрод УЭ, который применяется для включения тиристора в работу и выполнения регулирования.


Выпрямление синусоидальной гармоники производится по тому же принципу, как и у полупроводникового диода. Но, для работы тиристора необходимо учесть определенную особенность - структура его внутренних переходов должна быть открыта для прохождения электрических зарядов, а не закрыта.

Это осуществляется пропусканием тока определенной полярности через управляющий электрод. На картинке ниже показаны способы открытия тиристора, используемые заодно для регулировки величины пропускаемого тока в разные моменты времени.


При подаче тока через УЭ в момент перехода синусоиды через нулевое значение создается максимальная величина, которая постепенно уменьшается в точках «1», «2», «3».

Таким способом происходит выпрямление тока в комплексе с регулированием тиристором. Аналогичным образом работают симисторы и мощные полевые MOSFET и/или AGBT транзисторы в силовых цепях. Но, они не выполняют функцию выпрямления тока, пропуская его в обоих направлениях. Поэтому в их схемах управления используется дополнительный алгоритм прерывания импульса.

Преобразователи постоянного тока

Эти конструкции осуществляют обратную выпрямителям операцию. Они применяются для выработки переменного синусоидального тока из постоянного, получаемого от химических источников тока.

Раритетные разработки

С конца XIX века для преобразования постоянного напряжения в переменное использовались электрические машинные конструкции. В их состав входил электродвигатель постоянного тока, получавший энергию от аккумулятора или комплекта батарей и генератор переменного напряжения, якорь которого вращался от привода двигателя.

В отдельных устройствах обмотка генератора наматывалась прямо на общем роторе двигателя. При этом способе не только меняли форму сигнала, но и, как правило, увеличивали амплитуду напряжения или частоту.

Если на якоре генератора намотаны три разнесенные по 120 градусов обмотки, то с его помощью получали уже равноценное симметричное трехфазное напряжение.


Умформеры широко использовались вплоть до 70-х годов для радиоламповых устройств, оборудования троллейбусов, трамваев, электровозов до массового внедрения полупроводниковых элементов.

Инверторные преобразователи

Принцип работы

За основу рассмотрения возьмем схему проверки тиристора КУ202 от батарейки и лампочки.


В цепь подачи плюсового потенциала батарейки на анод врезан нормально замкнутый контакт кнопки SA1 и лампочка накаливания малой мощности. Подключение управляющего электрода выполнено через токоограничивающий резистор и открытый контакт кнопки SA2. Катод соединен жестко с минусом батарейки.

Если в момент времени t1 нажать кнопку SA2, то по цепочке управляющего электрода на катод потечет ток, который откроет тиристор и лампочка, включенная в анодную ветвь, загорится. Она, благодаря конструктивной особенности этого тиристора, будет продолжать гореть даже при размыкании контакта SA2.

Теперь в момент времени t2 нажмем на кнопку SA1. Цепь питания анода обесточится, а лампочка погаснет из-за того, что прохождение тока через нее прекратится.

На графике представленной картинки видно, что внутри промежутка времени t1÷t2 проходил постоянный ток. Если переключения кнопок выполнять очень быстро, то можно сформировать с положительным знаком. Точно так же можно создать отрицательный импульс. С этой целью достаточно немного изменить схему для прохождения тока противоположного направления.

Последовательность двух импульсов положительного и отрицательного значения создает форму сигнала, называемого в электротехнике «меандр». Его прямоугольная форма довольно грубо напоминает синусоиду с двумя полуволнами противоположных знаков.

Если в рассмотренной схеме заменить кнопки SA1 и SA2 контактами реле или транзисторными ключами и коммутировать их по определенному алгоритму, то можно будет в автоматическом режиме создавать ток с формой меандра и подгонять его под определенную частоту, скважность, период. Такими переключениями занимается специальная электронная схема управления.

Структурная схема силовой части

В качестве примера рассмотрим наиболее простую систему первичных цепей инвертора, работающего по мостовой схеме.


Здесь вместо тиристора формированием прямоугольного импульса занимаются специально подобранные полевые транзисторные ключи. В диагональ их моста включено сопротивление нагрузки Rн. Силовые электроды каждого транзистора «исток» и «сток» встречно соединены с шунтирующими диодами, а на «затвор» подключены выходные контакты схемы управления.

За счет автоматической работы управляющих сигналов на нагрузку выдаются различные по длительности и знаку импульсы напряжения. Их очередность и характеристики подогнаны под оптимальные параметры выходного сигнала.

Под действием приложенных напряжений на диагональном сопротивлении с учетом переходных процессов возникает ток, форма которого уже больше приближена к синусоиде, чем у меандра.

Сложности технической реализации

Для хорошего функционирования силовой схемы инверторов необходимо обеспечивать надежную работу системы управления, которая основана на коммутации ключей. Они наделяются свойствами двусторонней проводимости и формируются за счет шунтирования транзисторов подключением обратных диодов.

С целью регулирования амплитуды выходного напряжения чаще всего используется за счет выбора площади импульса каждой полуволны методом управления ее длительностью. Кроме этого способа встречаются устройства, работающие на амплитудном импульсном преобразовании.

В процессе формирования выходных цепей напряжения возникает нарушение симметрии полуволн, которое отрицательно сказывается на работе индуктивных нагрузок. Наиболее характерно это заметно у трансформаторов.

При работе системы управления задается алгоритм формирования ключей силовой цепи, включающий три этапа:

1. прямой;

2. короткозамкнутый;

3. инверсный.

На нагрузке возможны появления не только пульсирующих, но и изменяющихся по направлению токов, которые создают дополнительные помехи на зажимах источника.

Типовые конструкции

Среди множества различных технологических решений, используемых для создания инверторов, распространены три схемы, рассматриваемые по степени увеличения сложности:

1. мостовая без трансформатора;

2. с нулевым выводом трансформатора;

3. мостовая с трансформатором.

Формы выходных сигналов

Инверторы создаются для выдачи напряжений:

    прямоугольного вида;

    трапеции;

    ступенчатых чередующихся сигналов;

    синусоид.

Преобразователи фаз

Промышленность выпускает электродвигатели для работы в конкретных условиях эксплуатации с учетом питания от определенных видов источников. Однако, на практике возникают ситуации, когда по разным причинам необходимо подключить трехфазный асинхронный двигатель в однофазную сеть. Для этого разработаны различные электрические схемы и устройства.

Энергозатратные технологии

Статор трехфазного асинхронного двигателя включает в свой состав три разнесенные по 120 градусов навитые определенным образом обмотки, каждая из которых при подаче в нее тока своей фазы напряжения создает собственное вращающееся магнитное поле. Направление токов выбрано так, что их магнитные потоки дополняют друг друга, обеспечивая взаимное действие для вращения ротора.

Когда имеется всего одна фаза напряжения питания для такого двигателя, то возникает необходимость сформировать из нее три цепочки тока, каждая из которых тоже смещена на 120 градусов. Иначе вращение не получится или будет неполноценным.

В электротехнике существует два простых способа поворота вектора тока относительно напряжения методом подключения на:

1. индуктивную нагрузку, когда ток начинает отставать от напряжения на 90 градусов;

2. емкость для создания опережения тока на 90 градусов.


На приведенной картинке показано, что от одной фазы напряжения Ua можно получить ток, сдвинутый по углу не на 120, а только на 90 градусов вперед или назад. Причем для этого потребуется еще подбирать номиналы конденсаторов и дросселей чтобы создать допустимый режим работы двигателя.

В практических решениях подобных схем чаще всего останавливались на конденсаторном способе без использования индуктивных сопротивлений. Для этого в одну обмотку подавали напряжение фазы питания без каких-либо преобразований, а в другую - сдвинутую конденсаторами. В результате создавался приемлемый крутящий момент для двигателя.

Но чтобы раскрутить ротор требовалось создать дополнительный крутящий момент подключением третьей обмотки через пусковые конденсаторы. Использовать их для постоянной работы невозможно из-за образования больших токов в пусковой схеме, которые быстро создают повышенный нагрев. Поэтому эта цепочка включалась кратковременно для набора момента инерции вращения ротора.

Подобные схемы проще реализовывались благодаря простому формированию конденсаторных батарей определенных номиналов из отдельных доступных элементов. Дроссели же необходимо было самостоятельно рассчитывать и наматывать, что затруднительно выполнять не только в домашних условиях.

Однако, наилучшие условия для работы двигателя создавались при комплексном включении конденсатора и дросселя в разные фазы с подбором направлений токов в обмотках и применением токогасящих резисторов. При таком способе потери мощности двигателя составляли до 30%. Однако, конструкции подобных преобразователей были экономически не выгодны потому, что они потребляли для работы больше электроэнергии, чем сам двигатель.

Конденсаторная схема запуска тоже потребляет повышенную норму электричества, но в меньшей степени. К тому же, двигатель, подключенный в ее схему, способен выработать мощность, незначительно превышающую 50% от той, которая создавалась при нормальном трехфазном питании.

Из-за сложностей подключения трехфазного двигателя в цепь однофазного питания и больших потерь электроэнергии и выходной мощности такие преобразователи показали свою низкую эффективность, хотя продолжают работать в отдельных установках и станках.

Инверторные устройства

Полупроводниковые элементы позволили создать более рациональные преобразователи фаз, выпускаемые на промышленной основе. Их конструкции обычно предназначены для эксплуатации в трехфазных схемах, но они могут быть созданы для работы и с большим количеством разнесенных на разные углы цепочек.

При работе преобразователей, питаемых от одной фазы, выполняется следующая очередность технологических операций:

1. выпрямление однофазного напряжения диодной сборкой;

2. сглаживание пульсаций схемой стабилизации;

3. преобразование постоянного напряжения в трехфазное за счет метода инвертирования.

При этом силовая схема может состоять из трех однофазных частей, работающих автономно, как рассмотрено ранее, или одной общей, собранной, например, по системе автономного трехфазного инверторного преобразования с использованием нулевого общего провода.


Здесь на каждую нагрузку фазы работают свои пары полупроводниковых элементов, которые управляются от общей системы управления. Они создают синусоидальные токи в фазах сопротивлений Ra, Rb, Rc, которые подключены к общей схеме питания через нулевой провод. В нем происходит сложение векторов токов от каждой нагрузки.

Качество приближения выходного сигнала к виду чистой синусоиды зависит от общей конструкции и сложности используемой схемы.

Преобразователи частоты

На основе инверторов создаются устройства, позволяющие в широких пределах изменять частоту синусоидальных колебаний. Для этого поступающая на них электроэнергия в 50 герц претерпевает следующие изменения:

    выпрямления;

    стабилизации;

    преобразования напряжения повышенной частоты.


В основу работы заложены те же принципы предыдущих конструкций за исключением того, что система управления на основе микропроцессорных плат формирует на выходе преобразователя выходное напряжение повышенной частоты в десятки килогерц.

Частотное преобразование на основе автоматических устройств позволяет оптимально регулировать работу электродвигателей в моменты пуска, торможения и реверса, а также удобно изменять скорость вращения ротора. При этом резко снижается вредное влияние переходных процессов во внешней электрической сети питания.

Сварочные инверторы

Основное назначение этих преобразователей напряжение состоит в поддержании стабильного горения дуги и легкого управления всеми ее характеристиками, включая поджиг.


С этой целью в конструкцию инвертора включены несколько блоков, осуществляющих последовательное выполнение:

    выпрямления трехфазного или однофазного напряжения;

    стабилизацию параметров фильтрами;

    инвертирование из стабилизированного постоянного напряжения высокочастотных сигналов;

    преобразование в/ч напряжения понижающим трансформатором для повышения величины сварочного тока;

    вторичное выпрямление выходного напряжения для формирования дуги у сварки.

За счет использования высокочастотного преобразования сигнала значительно снижаются габариты сварочного трансформатора и экономятся материалы для всей конструкции. обладают большими преимуществами в эксплуатации по сравнении со своими электромеханическими аналогами.

Трансформаторы: преобразователи напряжения

В электротехнике и энергетике по-прежнему для изменения амплитуды сигнала напряжения наибольшее распространение имеют трансформаторы, работающие на электромагнитном принципе.


Они имеют две или большее количество обмоток и , по которому передается магнитная энергия для преобразования входного напряжения в выходное с измененной амплитудой.

Современная наука объясняет существование электричества скоплениями зарядов противоположных знаков. В природе вырабатывается невероятное количество электричества. Силы трения в атмосфере создают огромные пространства из грозовых облаков. Между облаками, с поверхностью земли возникают напряжения в миллионы вольт. А несколько минут грозы с молниями эквивалентны по электрической мощности продолжительной работе большой электростанции.

Но молний может и не быть. Однако электроэнергия всё равно витает в пространстве между небом и землёй.

  • Очевидно, что напряжение это первый и основной параметр энергии электричества.

В природе существуют только медленно изменяющиеся и почти мгновенно исчезающие напряжения. Гроза постепенно набирает силу, зарядов от трения перемещающихся слоёв воздуха становится всё больше. Напряжение между облаками и поверхностью земли увеличивается.

Если движение воздушных масс в определённый момент прекратится, напряжение постепенно уменьшится. Если нет – разряд молнии моментально «обнулит» напряжение.

  • Очевидно, что электрический ток, который имеет вид молнии, является вторым параметром электрической энергии.

По мере развития науки люди научились моделировать атмосферные электрические процессы, придумав электростатическую, или как её называют иначе электрофорную машину:

Эта машина стала первым преобразователем механической энергии в электроэнергию. Однако преобразование это не удалось сделать обратимым. Хотя машина и была источником напряжения и тока, проблема состояла в том, что сделать дальнейшие преобразования электрической энергии не получалось. Но со временем наука выявила ещё одну причину возникновения электрических зарядов. Не только трение, но и магнитное поле оказалось способным создавать электричество.

Это открытие оказалось полностью определённым развитием технологий. Когда появились металлическая проволока и постоянный магнит, взаимодействие которых в природе не существует, стало возможным открытие электромагнитной индукции. При этом выяснилось, что получаемая энергия электричества напрямую связана со скоростью взаимного перемещения магнита и провода.

  • Очевидно, что частота является третьим параметром энергии электричества.

После открытия Фарадеем явления электромагнитной индукции были изобретены различные электрические машины, в том числе и преобразователи электрической энергии. Первыми из них стали трансформаторы , которые сделали возможной передачу энергии электричества по проводам на значительные расстояния. Оказалось, что переменное напряжение на концах обмотки катушки равномерно распределяется между её витками. На каждом витке получается одинаковое по величине напряжение.

Поэтому количество витков обмотки определит напряжение, которое можно использовать для питания новой электрической цепи. Выяснилось также и то, что дополнительный виток охватывающий сердечник катушки вне основной обмотки имеет на своих концах такое же напряжение, как и виток основной обмотки. Такие катушки, охватывающие общий магнитопровод, стали называть трансформаторами. Если все катушки при этом соединялись между собой в последовательную цепь, такое устройство назвали автотрансформатором.

Автотрансформатор при одинаковых параметрах преобразования электроэнергии оказывается эффективнее трансформатора, поскольку в нём существует электрическая связь между обмотками. Поэтому он может передать потребителю большую электрическую мощность. В трансформаторе между обмотками существует только электромагнитная связь.

Но эта особенность обеспечивает полную электрическую изоляцию обмоток друг от друга. По этой причине трансформаторы широко используются во всех электрических устройствах, питающихся от электрической сети для получения безопасного электропитания этих устройств. Трансформаторы позволяют изменять лишь напряжение и ток, оставляя их частоту без какого-либо изменения. В этом качестве они применяются до сих пор. А в дальних системах электроснабжения трансформаторы достигли огромных размеров. Один из таких агрегатов показан на изображении ниже:

Но после появления трансформаторов проявилась ещё одна возможность преобразования электроэнергии.

Катушки

Оказалось, что любая катушка запасает энергию в электромагнитном поле. Оно существует некоторое время после того, как по обмотке катушки перестаёт течь электроток. А на концах обмотки катушки в течение этого времени продолжает существовать напряжение. Такое явление стали называть как ЭДС самоиндукции. Выяснилось также и то, что величина ЭДС самоиндукции зависит от скорости отключения электротока в катушке.

Чем быстрее уменьшается ток, тем больше напряжение на концах обмотки. Такой преобразователь электроэнергии получил своё название по фамилии своего изобретателя и стал называться «катушкой Румкорфа», изображение которой показано ниже слева. На таком же принципе работает классическая система зажигания автомобильного бензинового двигателя.

Однако преобразовать частоту напряжения и тока длительное время можно было только при помощи вращения. Синхронный двигатель , который вращался с частотой, определяемой частотой питающего напряжения, вращал генератор. Для увеличения частоты можно было либо использовать повышающий обороты редуктор, либо увеличивать число полюсов генератора, либо и то и другое вместе. Аналогично решалась и проблема получения выпрямленного тока. Механические контакты, например, коллектора двигателя пропускали только одну половину периода тока. Эти импульсы поступали в общую электрическую цепь, и таким образом получался выпрямленный ток обоих полупериодов.

Определяющий вклад в развитие преобразования электроэнергии внесли электронные приборы. Они позволили создавать выпрямители и преобразователи частоты без подвижных частей, обеспечивая параметры электроэнергии недостижимые для устройств, созданных на механических принципах. Стало возможным создание мощных высокочастотных генераторов, именуемых инверторами. Увеличение частоты позволило в несколько раз уменьшить размеры трансформаторов.

Инверторы

Инверторы получили дальнейшее развитие с появлением мощных высоковольтных полупроводниковых приборов – транзисторов и тиристоров . С их появлением преобразование электроэнергии на высокой частоте охватило почти все устройства с источниками вторичного электропитания. Инверторные схемы стали широко применяться для электронных балластов газоразрядных ламп. При этом достигалось более высокое качество света при значительной экономии электроэнергии.

Наиболее весомым моментом в развитии преобразования электроэнергии стали инверторы и выпрямители для высоковольтных линий электропередачи. Такие схемы дальнего электроснабжения начали применяться достаточно давно с появлением ртутных вентилей – мощных специализированных электровакуумных приборов.

Затем они были вытеснены более эффективными тиристорами и транзисторами. Полупроводниковые преобразователи электроэнергии позволяют обеспечить передачу электрической мощности в 3,15 гигаватт/час на расстояние 2400 км в современной системе электроснабжения в Бразилии. За такими системами передачи электроэнергии будущее. ЛЭП работающие на постоянном токе лишены реактивного сопротивления и потерь электроэнергии, связанных с переменным напряжением и током.

В них нет и других процессов и явлений, очень мешающих совместной работе нескольких электрогенерирующих и передающих систем в единой схеме электроснабжения. Но трение и электромагнетизм не единственные процессы, которые используются для преобразования электроэнергии. Примерно в те же годы открытия явления электромагнитной индукции был обнаружен пьезоэлектрический эффект.

В результате нашлась группа минералов, а впоследствии были искусственно созданы материалы с пьезоэлектрическими свойствами. Эти свойства заключаются в преобразовании механического воздействия, приложенного к образцу пьезоэлектрического материала, в электрические импульсы. Но обратное преобразование электрических импульсов в механические деформации образца также возможно. На основе таких образцов можно изготовить трансформатор без обмоток и магнитных полей в сердечнике и вне его.

Такой трансформатор будет увеличивать приложенное напряжение во много раз при минимальных размерах и весе. Это будет просто керамическая пластина с припаянными проводками.

При этом получаемая мощность не будет большой. Но выигрыш в размерах и себестоимости по сравнению с электромагнитным трансформатором будет существенной. Такие пьезоэлектрические трансформаторы применяются в источниках вторичного электропитания. Также все современные курильщики пользуются зажигалками, в которых искра создаётся миниатюрным пьезоэлектрическим трансформатором.

Дальнейшее развитие преобразователей электроэнергии это битва за увеличение частоты напряжения и тока. Этот процесс связан с необходимостью создания новых полупроводниковых приборов и материалов. В сочинениях некоторых писателей фантастов упоминается энергетический луч, используемый вместо ЛЭП . Возможно, их пророчества таки сбудутся.

Электрическая энергия вырабатывается на электрических станциях и передается потребителям главным образом в виде переменного трехфазного тока промышленной частоты 50 Гц. Однако как в промышленности, так и на транспорте имеются установки, для питания которых переменный ток частотой 50 Гц непригоден.

Вопросами, связанными с преобразованием электрической энергии из одного ее вида в другой, занимается область науки и техники, получившая название преобразовательной техники (или энергетической электроники). К числу основных видов преобразования электрической энергии относятся:

  • 1. Выпрямление переменного тока - преобразование переменного тока (обычно промышленной частоты) в постоянный ток. Этот вид преобразования получил наибольшее развитие, так как часть потребителей электрической энергии может работать только на постоянном токе (электрохимические и электрометаллургические установки, линии передачи постоянного тока, электролизные ванны, заряжаемые аккумуляторные батареи, радиотехническая аппаратура и т.д.), другие же потребители имеют на постоянном токе лучшие характеристики, чем на переменном токе (регулируемые электродвигатели).
  • 2. Инвертирование тока - преобразование постоянного тока в переменный. Инвертор применяется в тех случаях, когда источник энергии генерирует постоянный ток (электромашинные генераторы постоянного тока, аккумуляторные батареи и другие химические источники тока, солнечные батареи, магнитогидродинамические генераторы и т.д.), а для потребителей нужна энергия переменного тока. В ряде случаев инвертирование тока необходимо при других видах преобразования электрической энергии (преобразование частоты, преобразование числа фаз).
  • 3. Преобразование частоты - преобразование переменного тока одной частоты (обычно 50 Гц) в переменный ток другой частоты. Такое преобразование необходимо для питания регулируемых электроприводов переменного тока, установок индукционного нагрева и плавки металлов, ультразвуковых устройств и т. д.
  • 4. Преобразование числа фаз. В ряде случаев встречается необходимость в преобразовании трехфазного тока в однофазный (например, для питания дуговых электропечей) или, наоборот, однофазного в трехфазный. Так, на электрифицированном транспорте используется контактная сеть однофазного переменного тока, а на электровозах используются вспомогательные машины трехфазного тока. В промышленности используются трехфазно-однофазные преобразователи частоты с непосредственной связью, в которых наряду с преобразованием промышленной частоты в более низкую происходит и преобразование трехфазного напряжения в однофазное.
  • 3. Преобразование постоянного тока одного напряжения в постоянный ток другого напряжения (преобразование постоянного напряжения). Подобное преобразование необходимо, например, на ряде подвижных объектов, где источником электроэнергии является аккумуляторная батарея или другой источник постоянного тока низкого напряжения, а для питания потребителей требуется более высокое постоянное напряжение (например, источники питания радиотехнической или электронной аппаратуры).

Существуют и некоторые другие виды преобразования электрической энергии (например, формирование определенной кривой переменного напряжения), в частности, формирование мощных импульсов тока, которые находят применение в специальных установках, регулируемое преобразование переменного напряжения. Все виды преобразований осуществляют с использованием силовых ключевых элементов. Основные типы полупроводниковых ключей - диоды, силовые биполярные транзисторы, тиристоры, запираемые тиристоры, транзисторы с полевым управлением.

Преобразователи на тиристорах принято делить на две группы: ведомые и автономные. В первых периодический переход тока с одного вентиля на другой (коммутация тока) осуществляется под действием переменного напряжения какого-либо внешнего источника. Если таким источником является сеть переменного тока, говорят о преобразователе, ведомом сетью. К таким преобразователям относятся: выпрямители, ведомые сетью (зависимые) инверторы, непосредственные преобразователи частоты, преобразователи числа фаз, преобразователи переменного напряжения. Если внешним источником напряжения, обеспечивающим коммутацию, является машина переменного тока (например, синхронный генератор или двигатель), преобразователь называют ведомым машиной.

Автономные преобразователи выполняют функции преобразования формы или регулирования напряжения (тока) путем изменения состояния управляемых силовых ключевых элементов под действием сигналов управления. К автономным преобразователям относятся импульсные регуляторы постоянного и переменного напряжения, некоторые виды инверторов напряжения.

Традиционно силовые вентильные преобразователи использовались для получения выпрямленного напряжения промышленных сетей частотой 50 Гц и для получения переменного напряжения (однофазного или трехфазного) при питании от источника постоянного напряжения. Для этих преобразователей (выпрямителей и инверторов) используют диоды и тиристоры, коммутируемые с частотой сети. Форма выходного напряжения и тока определяется линейной частью схемы и фазовой модуляцией угла регулирования.

Выпрямление и инвертирование продолжают оставаться ведущим способом преобразования электрической энергии, однако способы преобразования претерпели значительные изменения и их разновидности стали гораздо многочисленнее.

Появление новых типов силовых полупроводниковых вентилей, близких к идеальному управляемому ключевому элементу, существенно изменило подход к построению вентильных преобразователей. Получившие распространение в последние годы запираемые тиристоры (GTO - gate turn off thirystor) и биполярные транзисторы с изолированным затвором (БТИЗ - IGBT - insolated gate bipolar transistor) успешно перекрывают диапазон мощностей до сотен и тысяч киловатт, их динамические свойства непрерывно совершенствуются, а стоимость с ростом выпуска снижается. Поэтому они успешно вытеснили обычные тиристоры с узлами принудительной коммутации. Области применения импульсных преобразователей напряжения с новыми классами приборов также расширились. Быстро развиваются мощные импульсные регуляторы как для повышения, так и для понижения постоянного напряжения питания; импульсные преобразователи часто используются в системах утилизации энергии возобновляемых источников (ветер, солнечная радиация).

Большие вложения делаются в производство энергии с использованием энергосберегающих технологий, когда возобновляемые первичные источники используются либо для возврата энергии в сеть, либо для подзарядки накопителя (аккумулятора) в установках с повышенной надежностью энергоснабжения. Появляются новые классы преобразователей для электроприводов с вентильно-индукторными двигателями (SRD - switched reluctanse drive). Эти преобразователи представляют собой многоканальные (число каналов обычно от трех до восьми) коммутаторы, обеспечивающие поочередно подключение обмоток статора двигателя с регулируемыми частотой и напряжением. Импульсные преобразователи получают широкое распространение в источниках питания бытовой аппаратуры, зарядных устройствах, сварочных агрегатах и целом ряде новых применений (пускорегулирующие устройства осветительных установок, электрофильтры и пр.).

Помимо совершенствования элементной базы силовых преобразовательных цепей на стратегию решения схемотехнических задач оказало огромное влияние развитие микроконтроллерных устройств и цифровых методов обработки информации.


© 2024
colybel.ru - О груди. Заболевания груди, пластическая хирургия, увеличение груди