30.09.2019

Скорости изменения энергии запасаемой в конденсаторе. Энергия конденсатора. Другие виды накопителей энергии


Рассмотрим конденсатор емкостью С, с разностью потенциалов ф12между пластинами. Зарядфравен Сф13. На одной пластине имеет­ся заряд Q, а на другой - Q. У в е л и ч и м заряд от Q до Q rdQ, пере­неся положительный заряд dQ с отрицательно заряженной пластины на положительную, т. е. произведя работу против разности потенци­алов ф12. Затраченная работа равна dW=(fi2dQ=QdQ;C. Следова­тельно, для того чтобы зарядить незаряженный конденсатор неко­торым конечным зарядом QK, требуется затратить работу

Это и есть энергия, «запасенная» в конденсаторе. Ее можно также выразить уравнением

U = Сф12/2. (21)

Емкость плоского конденсатора с площадью пластин А и зазором s равна C=A!4ns, а электрическое поле E=(p12/s. Следовательно, уравнение (21) эквивалентно также выражению

Это выражение согласуется с общей формулой (2.36) для энергии, запасенной в электрическом поле *).

*) Все вышесказанное относится к «воздушным конденсаторам», выпол­ненным из проводников, между которыми находится воздух. Как вам извест­но из лабораторных работ, большинство конденсаторов, применяемых в элек­трических контурах, заполнено изоляторами или «диэлектриками». Мы будем изучать свойства таких конденсаторов в гл. 9.

Было бы ошибочным создать впечатление, что не существует общих методов решения граничной задачи для уравнения Лапласа. Не имея возможности подробно рассмотреть этот вопрос, мы укажем на три полезные и интересные метода, с которыми вы встретитесь при дальнейшем изучении физики или прикладной математики. Первый метод - это элегантный метод анализа, называемый конформным отображением; он основан на теории функций комплексного пере­менного. К сожалению, его можно применять только к двумерной системе. Существуют системы, в которых ср зависит только от х и у, например, случай, когда все поверхности проводников расположены параллельно оси 2. Тогда уравнение Лапласа принимает вид

с граничными условиями, заданными на некоторых линиях или кри­вых в плоскости ху. В практике встречается много таких систем, или подобных им, поэтому метод, помимо математического интереса, является практически полезным. Например, точное решение для по­тенциала вблизи двух длинных парал­лельных полос легко получить мето­дом конформного отображения. Сило­вые линии и эквипотенциальные поверхности изображены в попереч­ном сечении па рис. 3.16. Рисунок дает нам представление о краевом эффекте поля плоских конденсаторов, длина которых велика по сравнению с расстоянием между пластинами. Поле, изображенное на рис. 3.11, б, было построено на основании такого решения. Вы сможете пользоваться этим методом после того, как более глубоко изучите функции комплек­сного переменного.

Вторым методом является числен­ное определение приближенных реше­ний задачи об электростатическом потенциале при заданных граничных

условиях. Этот очень простой и почти универсальный метод основан на свойстве гармонических функций, с которым вы уже знакомы: значение функции в точке равно ее среднему значению по окрестности этой точки. В этом методе потенциальная функция <р представлена только значениями ряда дискретных точек, включая дискретные точки на границах. Значения функции в точках, не лежащих на границах, подбираются до тех пор, пока каждое из них

Рис. 3.16. Силовые линии и эквипо­тенциальные поверхности для двух бесконечно длинных проводящих полос.

не будет равно среднему из соседних значений. В принципе это мож­но сделать, решая одновременно большое количество уравнений, равное числу внутренних точек. Но приближенное решение можно получить гораздо проще, систематически изменяя каждое значение, чтобы приблизить его к среднему из соседних значений, и повторяя этот процесс до тех пор, пока изменения не станут пренебрежимо малыми. Этот метод носит название метода релаксации. Единствен­ным препятствием к применению этого метода является трудоем­кость процесса вычисления, но теперь это препятствие устранено, так как расчет производится быстродействующими вычислительными машинами, которые идеально подходят для этого метода. Если вам это интересно, обратитесь к задачам 3.29 и 3.30.

Третьим методом приближенного решения краевой задачи яв­ляется вариационный метод. Он основан на принципе, который встречается во многих разделах физики, от ньютоновской динамики до оптики и квантовой механики. В электростатике этот принцип выражается в следующей форме: нам уже известно, что полная энер­гия электростатического поля дается выражением

Если вы решили задачу 2.19, то знаете, что в этом очень простом случае заряд на проводящей поверхности с постоянным потенциалом (состоящей из двух сфер, связанных проводом) распределен таким образом, чтобы энергия, запасенная во всем поле,была минималь­ной. Это общее правило. В любой системе проводников, при раз­личных фиксированных значениях потенциалов, заряд распреде­ляется по каждому проводнику таким образом, чтобы значение энер­гии, запасенной в поле, стало минимальным. Это становится почти очевидным, если указать, что любое уменьшение полной энергии по­ля связано с совершением работы перераспределения заряда *). Плоская поверхность воды в сосуде имеет то же объяснение.

Рассмотрим теперь потенциальную функцию q>(x, у, г) в некото­рой области, заключающей в себе несколько граничных поверхно­стей с заданными потенциалами. Точное значение функции ф(х, у,г), т. е. решение уравнения У2ф = 0, удовлетворяющее заданным потен­циалам на границах, отличается от всех других функций, удовлетво­ряющих граничным условиям, но не удовлетворяющих уравнению Лапласа, например от 1|з(лг, у, z), так как запасенная энергия для ф меньше, чем для г|э. Выразим энергию через ф, как в уравнении (2.38):

*) Рассуждая таким образом, мы считаем, что течение заряда сопровождается некоторым рассеянием энергии. Это так обычно и бывает. В противном случае система, не находящаяся вначале в состоянии равновесия, не могла бы придти в это состояние, избавившись от лишней энергии. Как вы думаете, что произошло бы в этом случае?

Теперь мы можем поставить граничную задачу по-новому, не упоминая о лапласиане. Потенциальная функция - это та функция, которая минимизирует интеграл уравнения (25) по сравнению со всеми другими функциями, удовлетворяющими тем же граничным условиям. Следовательно, возможным методом получения прибли­женного решения данной краевой задачи является испытание боль­шого количества функций, имеющих заданные граничные значения, и последующий выбор той функции, которая обеспечивает минималь­ное значение U. Можно также взять функцию с одним или двумя переменными параметрами и использовать эти математические «кнопки» для минимизации U. Этот метод особенно удобен для опре­деления самой энергии, часто наиболее важной неизвестной величи­ны. Поскольку энергия U минимальна для точного значения ф, то она мало чувствительна к отклонениям от этого значения. Задача 3.32 иллюстрирует простоту и точность вариационного метода.

Вариационный принцип представляет собой альтернатив­ную формулировку основного закона электростатического поля, и это для нас более существенно, чем польза, которую он при­носит при вычислениях. Известно, что формулировка физических законов в виде вариационных принципов часто весьма плодотворна. Профессор Р. П. Фейнман, известный своими блестящими работами в этой области, дал живое и элементарное изложение вариационных идей в книге «Фейнмановские лекции по физике» (см. т. 6, гл. 19).

В том случае, если обкладки заряженного конденсатора замыкают при помощи проводника, то в проводнике появляется электрический ток, и через некоторое время конденсатор разряжается. При прохождении тока по проводнику выделяется некоторое количество теплоты, следовательно, конденсатор, обладающий зарядом, имеет энергию.

Определим энергию заряженного конденсатора. Будем считать, что конденсатор заряжают и этот процесс происходит очень медленно. Мгновенное значение напряжения между его обкладками обозначим как u. Так как процесс зарядки считаем квазистатическим, между обкладками увеличивается бесконечно медленно. Тогда потенциал каждой обкладки в каждый момент времени можно считать одинаковым в любом месте обкладки. При увеличении заряда обкладки на величину dq, совершается внешняя работа (работа источника) равная :

Используем формулу, которая связывает заряд, емкость и напряжение, получим:

В том случае, если емкость не зависит от напряжения электрического поля, то работа идет на увеличение энергии конденсатора (dW). Проинтегрируем выражение (2), учитывая, что напряжение изменяется от 0 до величины U, имеем:

Применяя формулу:

выражение для энергии поля конденсатора можно преобразовать к виду:

Именно благодаря своей способности запасать энергию, конденсаторы имеют большое значение в радиотехнике и электронике.

Энергия поля плоского конденсатора

Напряжение между обкладками плоского конденсатора может быть найдено как:

где d — расстояние между пластинами конденсатора. Учитывая, что для плоского конденсатора емкость определена выражением:

где - объем конденсатора; E - напряженность электрического поля в конденсаторе. Объемная плотность энергии (w) может быть найдена как:

Примеры решения задач

ПРИМЕР 1

Задание Напряжение между обкладками плоского конденсатора равна В, м. Пространство между пластинами конденсатора заполняет стекло. Какова объемная плотность энергии такого конденсатора (w)?
Решение Величина объемной плотности энергии поля определена как:

Энергия (W) поля конденсатора может быть найдена как:

При этом электрическая емкость конденсатора равна:

Используем выражения (1.2) и (1.3) для преобразования формулы (1.1), учтем, что:

получаем:

Из справочников найдем, что диэлектрическая проницаемость стекла равна: , проведем вычисления:

Ответ

ПРИМЕР 2

Задание Конденсаторы , , соединены так, как указано на рис. 1. и включены в цепь с напряжением U. Какова энергия первого конденсатора ()?

Для накопления электроэнергии люди сначала использовали конденсаторы. Потом, когда электротехника вышла за пределы лабораторных опытов, изобрели аккумуляторы, ставшие основным средством для запасания электрической энергии. Но в начале XXI века снова предлагается использовать конденсаторы для питания электрооборудования. Насколько это возможно и уйдут ли аккумуляторы окончательно в прошлое?

Причина, по которой конденсаторы были вытеснены аккумуляторами, была связана со значительно большими значениями электроэнергии, которые они способны накапливать. Другой причиной является то, что при разряде напряжение на выходе аккумулятора меняется очень слабо, так что стабилизатор напряжения или не требуется или же может иметь очень простую конструкцию.

Главное различие между конденсаторами и аккумуляторами заключается в том, что конденсаторы непосредственно хранят электрический заряд, а аккумуляторы превращают электрическую энергию в химическую, запасают ее, а потом обратно преобразуют химическую энерию в электрическую.

При преобразованиях энергии часть ее теряется. Поэтому даже у лучших аккумуляторов КПД составляет не более 90%, в то время, как у конденсаторов он может достигать 99%. Интенсивность химических реакций зависит от температуры, поэтому на морозе аккумуляторы работают заметно хуже, чем при комнатной температуре. Кроме этого, химические реакции в аккумуляторах не полностью обратимы. Отсюда малое количество циклов заряда-разряда (порядка единиц тысяч, чаще всего ресурс аккумулятора составляет около 1000 циклов заряда-разряда), а также «эффект памяти». Напомним, что «эффект памяти» заключается в том, что аккумулятор нужно всегда разряжать до определенной величины накопленной энергии, тогда его емкость будет максимальной. Если же после разрядки в нем остается больше энергии, то емкость аккумулятора будет постепенно уменьшаться. «Эффект памяти» свойственнен практически всем серийно выпускаемым типам аккумуляторов, кроме, кислотных (включая их разновидности - гелевые и AGM). Хотя принято считать, что литий-ионным и литий-полимерным аккумуляторам он не свойственнен, на самом деле и у них он есть, просто проявляется в меньшей степени, чем в других типах. Что же касается кислотных аккумуляторов, то в них проявляется эффект сульфатации пластин, вызывающий необратимую порчу источника питания. Одной из причин является длительное нахождение аккумулятора в состоянии заряда менее, чем на 50%.

Применительно к альтернативной энергетике «эффект памяти» и сульфатация пластин являются серьезными проблемами. Дело в том, что поступление энергии от таких источников, как солнечные батареи и ветряки, сложно спрогнозировать. В результате заряд и разряд аккумуляторов происходят хаотично, в неоптимальном режиме.

Для современного ритма жизни оказывается абсолютно неприемлемо, что аккумуляторы приходится заряжать несколько часов. Например, как вы себе представляете поездку на электромобиле на дальние расстояния, если разрядившийся аккумулятор задержит вас на несколько часов в пункте зарядки? Скорость зарядки аккумулятора ограничена скоростью протекающих в нем химических процессов. Можно сократить время зарядки до 1 часа, но никак не до нескольких минут. В то же время, скорость зарядки конденсатора ограничена только максимальным током, который дает зарядное устройство.

Перечисленные недостатки аккумуляторов сделали актуальным использование вместо них конденсаторов.

Использование двойного электрического слоя

На протяжении многих десятилетий самой большой емкостью обладали электролитические конденсаторы. В них одной из обкладок являлась металлическая фольга, другой - электролит, а изоляцией между обкладками - окись металла, которой покрыта фольга. У электролитических конденсаторов емкость может достигать сотых долей фарады, что недостаточно для того, чтобы полноценно заменить аккумулятор.

Сравнение конструкций разных типов конденстаторов (Источник: Википедия)

Большую емкость, измеряемую тысячами фарад, позволяют получить конденсаторы, основанные на так называемом двойном электрическом слое. Принцип их работы следующий. Двойной электрический слой возникает при определенных условиях на границе веществ в твердой и жидкой фазах. Образуются два слоя ионов с зарядами противоположного знака, но одинаковой величины. Если очень упростить ситуацию, то образуется конденсатор, «обкладками» которого являются указанные слои ионов, расстояние между которыми равно нескольким атомам.



Суперконденсаторы различной емкости производства Maxwell

Конденсаторы, основанные на данном эффекте, иногда называют ионисторами. На самом деле, этот термин не только к конденсаторам, в которых накапливается электрический заряд, но и к другим устройствам для накопления электроэнергии - с частичным преобразованием электрической энергии в химическую наряду с сохранением электрического заряда (гибридный ионистор), а также для аккумуляторов, основанных на двойном электрическом слое (так называемые псевдоконденсаторы). Поэтому более подходящим является термин «суперконденсаторы». Иногда вместо него используется тождественный ему термин «ультраконденсатор».

Техническая реализация

Суперконденсатор представляет собой две обкладки из активированного угля, залитые электролитом. Между ними расположена мембрана, которая пропускает электролит, но препятствует физическому перемещению частиц активированного угля между обкладками.

Следует отметить, что суперконденсаторы сами по себе не имеют полярности. Этим они принципиально отличаются от электролитических конденсаторов, для которых, как правило, свойственна полярность, несоблюдение которой приводит к выходу конденсатора из строя. Тем не менее, на суперконденсаторах также наносится полярности. Связано это с тем, что суперконденсаторы сходят с заводского конвейера уже заряженными, маркировка и означает полярность этого заряда.

Параметры суперконденсаторов

Максимальная емкость отдельного суперконденсатора, достигнутая на момент написания статьи, составляет 12000 Ф. У массово выпускаемых супероконденсаторов она не превышает 3000 Ф. Максимально допустимое напряжение между обкладками не превышает 10 В. Для серийно выпускаемых суперконденсаторов этот показатель, как правило, лежит в пределах 2,3 – 2,7 В. Низкое рабочее напряжение требует использование преобразователя напряжения с функцией стабилизатора. Дело в том, что при разряде напряжение на обкладках конденсатора изменяется в широких пределах. Построение преобразователя напряжения для подключения нагрузки и зарядного устройства являются нетривиальной задачей. Предположим, что вам нужно питать нагрузку с мощностью 60 Вт.

Для упрощения рассмотрения вопроса пренебрежем потерями в преобразователе напряжения и стабилизаторе. В том случае, если вы работаете с обычным аккумулятором с напряжением 12 В, то управляющая электроника должна выдерживать ток в 5 А. Такие электронные приборы широко распространены и стоят недорого. Но совсем другая ситуация складывается при использовании суперконденсатора, напряжение на котором составляет 2,5 В. Тогда ток, протекающий через электронные компоненты преобразователя, может достигать 24 А, что требует новых подходов к схмотехнике и современной элементной базы. Именно сложностью с построением преобразователя и стабилизатора можно объяснить тот факт, что суперконденсаторы, серийный выпуск которых был начат еще в 70-х годах XX века, только сейчас стали широко использоваться в самых разных областях.



Принципиальная схема источника бесперебойного питания
напряжением на суперконденсаторах, основные узлы реализованы
на одной микосхеме производства LinearTechnology

Суперконденсаторы могут соединяться в батареи с использованием последовательного или параллельного соединения. В первом случае повышается максимально допустимое напряжение. Во втором случае - емкость. Повышение максимально допустимого напряжения таким способом является одним из способов решения проблемы, но заплатить за нее придется снижением емкости.

Размеры суперконденсаторов, естественно, зависят от их емкости. Типичный суперконденсатор емкостью 3000 Ф представляет собой цилиндр диаметром около 5 см и длиной 14 см. При емкости 10 Ф суперконденсатор имеет размеры, сопоставимые с человеческим ногтем.

Хорошие суперконденсаторы способны выдержать сотни тысяч циклов заряда-разряда, превосходя по этому параметру аккумуляторы примерно в 100 раз. Но, как и у электролитических конденсаторов, для суперконденсаторов стоит проблема старения из-за постепенной утечки электролита. Пока сколь-нибудь полной статистики выхода из строя суперконденсаторов по данной причине не накоплено, но по косвенным данным, срок службы суперконденсаторов можно приблизительно оценить величиной 15 лет.

Накапливаемая энергия

Количество энергии, запасенной в конденсаторе, выраженное в джоулях:

E = CU 2 /2,
где C - емкость, выраженная в фарадах, U - напряжение на обкладках, выраженное в вольтах.

Количество энергии, запасенной в конденсаторе, выраженное в кВтч, равно:

W = CU 2 /7200000

Отсюда, конденсатор емкостью 3000 Ф с напряжением между обкладками 2,5 В способен запасти в себе только 0,0026 кВтч. Как это можно соотнести, например, с литий-ионным аккумулятором? Если принять его выходное напряжение не зависящим от степени разряда и равным 3,6 В, то количество энергии 0,0026 кВтч будет запасено в литий-ионном аккумуляторе емкостью 0,72 Ач. Увы, весьма скромный результат.

Применение суперконденсаторов

Системы аварийного освещения являются тем местом, где использование суперконденсаторов вместо аккумуляторов дает ощутимый выигрыш. В самом деле, именно для этого применения характерна неравномерность разрядки. Кроме этого, желательно, чтобы зарядка аварийного светильника происходила быстро, и чтобы используемый в нем резервный источник питания имел большую надежность. Источник резервного питания на основе суперконденсатора можно встроить непосредственно в светодиодную лампу T8. Такие лампы уже выпускаются рядом китайских фирм.



Грунтовый светодиодный светильник с питанием
от солнечных батарей, накопление энергии
в котором осуществляется в суперконденсаторе

Как уже отмечалось, развитие суперконденсаторов во многом связано с интересом к альтернативным источникам энергии. Но практическое применение пока ограничено светодиодными светильниками, получающими энергию от солнца.

Активно развивается такое направление как использование суперконденсаторов для запуска электрооборудования.

Суперконденсаторы способны дать большое количество энергии в короткий интервал времени. Запитывая электрооборудование в момент пуска от суперконденсатора, можно уменьшить пиковые нагрузки на электросеть и в конечном счете уменьшить запас на пусковые токи, добившись огромной экономии средств.

Соединив несколько суперконденсаторов в батарею, мы можем достичь емкости, сопоставимой с аккумуляторами, используемыми в электромобилях. Но весить эта батарея будет в несколько раз больше аккумулятора, что для транспортных средств неприемлемо. Решить проблему можно, используя суперконденсаторы на основе графена, но они пока существуют только в качестве опытных образцов. Тем не менее, перспективный вариант знаменитого «Ё-мобиля», работающий только от электричества, в качестве источника питания будет использовать суперконденсаторы нового поколения, разработка которых ведется российскими учеными.

Суперконденсаторы также дадут выигрыш при замене аккумуляторов в обычных машинах, работающих на бензине или дизельном топливе - их использование в таких транспортных средствах уже является реальностью.

Пока же самым удачным из реализованных проектов внедрения суперконденсаторов можно считать новые троллейбусы российского производства, вышедшие недавно на улицы Москвы. При прекращении подачи напряжения в контактную сеть или же при «слетании» токосъемников троллейбус может проехать на небольшой (порядка 15 км/ч) скорости несколько сотен метров в место, где он не будет мешать движению на дороге. Источником энергии при таких маневрах для него является батарея суперконденсаторов.

В общем, пока суперконденсаторы могут вытеснить аккумуляторы только в отдельных «нишах». Но технологии бурно развиваются, что позволяет ожидать, что уже в ближайшем будущем область применения суперконденсаторов значительно расширится.

Конденсаторы являются неотъемлемой частью электрических схем. В большинстве случаев оперируют такими понятиями, как емкость и рабочее напряжение. Эти параметры являются основополагающими.

В некоторых случаях для более полного понимания работы упомянутого элемента необходимо иметь представление, что означает энергия заряженного конденсатора, как она вычисляется и от чего зависит.

Определение понятия энергии

Наиболее просто вести рассуждения применительно к плоскому конденсатору. В основе его конструкции лежат две металлических обкладки, разделенные тонким слоем диэлектрика.

Если подключить емкость к источнику напряжения, то нужно обратить внимание на следующее:

  • На разделение зарядов по обкладкам электрическим полем затрачивается определенная работа. В соответствии с законом сохранения энергии, эта работа равняется энергии заряженного конденсатора;
  • Разноименно заряженные обкладки притягиваются друг к другу. Энергия заряженного конденсатора в этом случае равняется работе, затраченной на сближение пластин друг к другу вплотную.

Данные соображения позволяют сделать вывод, что формулу энергии заряженного конденсатора можно получить несколькими способами.

Вывод формулы

Энергия заряженного плоского конденсатора наиболее просто определяется, исходя из работы по сближению обкладок.

Рассмотрим силу притяжения единичного заряда одной из обкладок к противоположной:

В данном выражении q0 – величина заряда, E – напряженность поля обкладки.

Поскольку напряженность электрического поля определяется из выражения:

E=q/(2ε0S), где:

  • q – величина заряда,
  • ε0 – электрическая постоянная,
  • S – площадь обкладок,

формулу силы притяжения можно записать как:

Для всех зарядов сила взаимодействия между обкладками, соответственно, составляет:

Работа по сближению пластин равняется произведению силы взаимодействия на пройденное расстояние. Таким образом, энергия заряженного конденсатора определяется выражением:

Важно! В приведенном выражении должна быть разница в положениях пластин. Записывая только одну величину d, подразумеваем, что конечным результатом будет полное сближение, то есть d2=0.

С учетом предыдущих выражений можно записать:

Известно, что емкость плоского конденсатора определяется из такого выражения:

В результате энергия определяется как:

Полученное выражение неудобно тем, что вызывает определенные затруднения определения заряда на обкладках. К счастью, заряд, емкость и напряжение имеют строгую взаимосвязь:

Теперь выражение принимает полностью понятный вид:

Полученное выражение справедливо для конденсаторов любых типов, не только плоских, и позволяет без затруднений в любой момент времени определять накопленную энергию. Емкость обозначается на корпусе и является величиной постоянной. В крайнем случае ее несложно измерять, используя специальные приборы. Напряжение измеряется вольтметром с необходимой точностью. К тому же очень просто зарядить конденсатор не полностью (меньшим напряжением), снизив, таким образом, запасенную энергию.

Для чего необходимо знать энергию

В большинстве случаев применения емкостей в электрических цепях понятие энергии не употребляется. Особенно это относится к время,- и частотозадающим цепям, фильтрам. Но есть области, где необходимо использовать накопители энергии. Наиболее яркий пример –фотографические вспышки. В накопительном конденсаторе энергия источника питания накапливается сравнительно медленно – несколько секунд, но разряд происходит практически мгновенно через электроды импульсной лампы.

Конденсатор, подобно аккумулятору, служит для накопления электрического заряда, но между этими элементами есть много различий. Емкость аккумулятора несравненно выше, чем у конденсатора, но последний способен отдать ее практически мгновенно. Лишь недавно, с появлением ионисторов, это различие несколько сгладилось.

Какова же ориентировочная величина энергии? Можно для примера вычислить ее для уже упомянутой фотовспышки. Пускай, напряжение питания составляет 300 В, а емкость накопительного конденсатора – 1000 мкФ. При полном заряде величина энергии составит 45 Дж. Это довольно большая величина. Прикосновение к выводам заряженного элемента может привести к несчастному случаю.

Важно! Принудительный разряд путем закорачивания выводов металлическими предметами чреват выходом устройства из строя. Накопленная энергия конденсатора способна за долю секунды расплавить выводы внутри элемента и вывести его из строя.

Видео

В заряженном конденсаторе накоплена (аккумулирована) электрическая энергия. Эта энергия конденсатора равна работе, необходимой для зарядки конденсатора.
Процесс зарядки конденсатора состоит, по сути, в том, что заряд с одной пластины переносится на другую. Именно это совершает источник напряжения, когда его подключают к конденсатору. Сначала, когда конденсатор не заряжен, для переноса первой порции заряда не требуется работы.
Но когда на каждой из пластин уже имеется заряд, для пополнения его приходится совершать работу против сил электрического отталкивания. Чем больше накопленный пластинами заряд, тем большую работу, необходимо совершить для его увеличения. Если на пластинах существует разность потенциалов V , работа по переносу элемента заряда dq равна dW = V dq . Поскольку V= q/C , где С - емкость конденсатора, тогда работа по его заряду составит:

Итак, мы можем сказать, что энергия, запасенная, или аккумулированная, конденсатором, равна

если заряды обкладок конденсатора емкостью С равны соответственно +Q и -Q . А так как Q = СV , где V - разность потенциалов между обкладками, мы можем написать

Пример 25.5 . Конденсатор емкостью 20 мкФ подключен к батарее напряжением 12 В. Какую энергию может запасти конденсатор?

Решение . Согласно (25.5),

Энергия не является «вещественной субстанцией», поэтому она вовсе не должна быть где-то сосредоточена. Тем не менее принято считать, что она запасена электрическим полем между пластинами.
Для примера выразим энергию плоского конденсатора через напряженность электрического поля. Мы показали [см. (24.3)], что между параллельными пластинами существует приблизительно однородное электрическое поле Е и его напряженность связана с разностью потенциалов соотношением V = Ed , где d - расстояние между пластинами.
Кроме того, согласно (25.2), емкость плоского конденсатора равна С = s 0 A/d . Тогда

Произведение Ad характеризует объем, занимаемый электрическим полем Е . Разделив обе части формулы на объем, получим выражение для энергии, запасенной в единице объема, или плотности энергии u :

Плотность электростатической энергии, запасенной в любой части пространства, пропорциональна квадрату напряженности электрического поля в этой области .

Выражение (25.6) получено для частного случая плоского конденсатора. Можно показать, однако, что оно справедливо для любой области пространства, в которой существует электрическое поле.

Продолжение следует. Коротко о следующей публикации:

Замечания и предложения принимаются и приветствуются!


© 2024
colybel.ru - О груди. Заболевания груди, пластическая хирургия, увеличение груди