14.10.2019

Примерами пластического обмена являются. Каталог файлов по биологии. Водно-минеральный обмен в организме


Обмен веществ краткая теория.

Обмен веществ (метаболизм)

Пластический обмен (анаболизм, ассимиляция)

Энергетический обмен (катаболизм, диссимиляция)

При пластическом обмене из простых веществ образуются (синтезируются) более сложные.

  • При фотосинтезе из углекислого газа и воды синтезируется глюкоза.

  • В клетках человека из простых органических веществ синтезируются сложные органические вещества, например, из аминокислот – белки, из глюкозы – гликоген.

Энергетический обмен (распад, дыхание) – это когда сложные вещества распадаются (окисляются) до более простых, и при этом выделяется энергия , необходимая для жизнедеятельности

  • Пластический обмен обеспечивает клетку сложными органическими веществами (белками, жирами, углеводами, нуклеиновыми кислотами), в том числе белками-ферментами для энергетического обмена.

  • Энергетический обмен обеспечивает клетку энергией. При выполнении работы (умственной, мышечной и т.п.) энергетический обмен усиливается.

АТФ – универсальное энергетическое вещество клетки (универсальный аккумулятор энергии). Образуется в процессе энергетического обмена (окисления органических веществ).

  • При пластическом обмене все вещества синтезируются, а АТФ – распадается. При этом расходуется энергия АТФ (энергия АТФ переходит в энергию химических связей сложных веществ, запасается в этих веществах).

  • При энергетическом обмене все вещества распадаются или окисляются, а АТФ – синтезируется. При этом энергия химических связей распавшихся сложных веществ переходит в энергию АТФ , энергия запасается в АТФ .

Этапы энергетического обмена.

  • Подготовительный этап.
    В пищеварительной системе (в лизосомах у одноклеточных животных) сложные органические вещества распадаются до более простых (белки до аминокислот, крахмал до глюкозы, жиры до глицерина и жирных кислот и т.п.). При этом выделяется энергия, которая рассеивается в форме тепла.

  • Бескислородный этап (гликолиз – бескислородное окисление глюкозы)
    Происходит в цитоплазме , без участия кислорода (анаэробно). Глюкоза окисляется до двух молекул пировиноградной кислоты, при этом 60% энергии рассеивается в виде тепла, а 40% энергии расходуется на синтез 2 молекул АТФ.

  • Кислородный этап.
    Происходит в митохондриях. ПВК окисляется кислородом до углекислого газа, также образуется вода и вся выделяющаяся энергия идет на синтез 36 молекул АТФ.

  • Брожение и кислородное дыхание

  • Брожение состоит из гликолиза (2 АТФ) и превращения ПВК в молочную кислоту или спирт + углекислый газ (0 АТФ). Итого 2 АТФ.

  • Кислородное дыхание состоит из гликолиза (2 АТФ) и окисления ПВК в митохондриях (36 АТФ). Итого 38 АТФ.
Тренировочные тесты

Обмен веществ и энергии. Стадии энергетического обмена.


А) более сложные углеводы синтезируются из менее сложных
Б) жиры превращаются в глицерин и жирные кислоты


А) ферментами
Б) молекулами белка
В) молекулами АТФ
Г) кислородом

3. Значение энергетического обмена в клеточном метаболизме состоит в том , что он обеспечивает реакции синтеза
А) ферментами
Б) витаминами
В) молекулами АТФ
Г) нуклеиновыми кислотами

В)расщепление глюкозы до ПВК и синтез 2 молекул АТФ;

Г)поступление ПВК в митохондрии;

Д)окисление ПВК и синтез 36 молекул АТФ

13.Установите соответствие между характеристикой и этапом энергетического обмена

Изменив немного тренировочные тесты можно легко составить проверочную работу.

Обмен веществ и энергии. Стадии энергетического обмена. 1 вариант.

1. В процессе пластического обмена
А) более сложные углеводы синтезируются из менее сложных
Б) жиры превращаются в глицерин и жирные кислоты
В) белки окисляются с образованием углекислого газа, воды, азотсодержащих веществ
Г) происходит освобождение энергии и синтез АТФ

2. Пластический обмен в клетках животных не может происходить без энергетического, так как энергетический обмен обеспечивает клетку
А) ферментами
Б) молекулами белка
В) молекулами АТФ
Г) кислородом

3. Значение энергетического обмена в клеточном метаболизме состоит в том, что он обеспечивает реакции синтеза
А) ферментами
Б) витаминами
В) молекулами АТФ
Г) нуклеиновыми кислотами

4. В процессе энергетического обмена, в отличие от пластического, происходит
А) расходование энергии, заключенной в молекулах АТФ
Б) запасание энергии в макроэргических связях молекул АТФ
В) обеспечение клеток белками и липидами
Г) обеспечение клеток углеводами и нуклеиновыми кислотами

5. При умственной работе в клетках мозга человека усиливается
А) образование гликогена
Б) накопление инсулина
В) энергетический обмен
Г) пластический обмен

6. Найдите соответствие

7. Каково значение пластического обмена в жизни живых организмов? Приведите примеры процессов.

Обмен веществ и энергии. Стадии энергетического обмена. 2 вариант.
1. Пластический обмен в клетке характеризуется
А) распадом органических веществ с освобождением энергии
Б) образованием органических веществ с накоплением в них энергии
В) всасыванием питательных веществ в кровь
Г) перевариванием пищи с образованием растворимых веществ

2. В результате кислородного этапа энергетического обмена в клетках синтезируются молекулы
А) белков
Б) глюкозы
В) АТФ
Г) ферментов

3. В процессе пластического обмена в клетках синтезируются молекулы
А) белков
Б) воды
В) АТФ
Г) неорганических веществ

4. В чем проявляется взаимосвязь пластического и энергетического обмена
А) пластический обмен поставляет органические вещества для энергетического
Б) энергетический обмен поставляет кислород для пластического
В) пластический обмен поставляет минеральные вещества для энергетического
Г) пластический обмен поставляет молекулы АТФ для энергетического

5. Какие реакции обмена веществ в клетке сопровождаются затратами энергии?
А) подготовительного этапа энергетического обмена
Б) молочнокислого брожения
В) окисления органических веществ
Г) пластического обмена

6.Установите соответствие между характеристикой и этапом энергетического обмена

7. Какое значение имеет энергетический обмен для пластического? Почему энергетический обмен протекает в 3 этапа?

В клетке обнаружены примерно тысяча ферментов. С помощью такого мощного каталитического аппарата осуществляется сложнейшая и многообразная химическая деятельность. Из громадного числа химических реакций клетки выделяются два противоположных типа реакций - синтез и расщепление.

Реакция синтеза. В клетке постоянно идут процессы созидания. Из простых веществ образуются более сложные, из низкомолекулярных - высокомолекулярные. Синтезируются белки , сложные углеводы , жиры , нуклеиновые кислоты . Синтезированные вещества используются для построения разных частей клетки, ее органоидов, секретов, ферментов, запасных веществ. Синтетические реакции особенно интенсивно идут в растущей клетке, постоянно происходит синтез веществ для замены молекул, израсходованных или разрушенных при повреждении. На место каждой разрушенной молекулы белка или какого-нибудь другого вещества встает новая молекула. Таким путем клетка сохраняет постоянными свою форму и химический состав, несмотря на непрерывное их изменение в процессе жизнедеятельности.

Синтез веществ, идущий в клетке, называют биологическим синтезом или сокращенно биосинтезом.

Все реакции биосинтеза идут с поглощением энергии.

Совокупность реакций биосинтеза называют пластическим обменом или ассимиляцией (лат. "симилис" - сходный). Смысл этого процесса состоит в том, что поступающие в клетку из внешней среды пищевые вещества, резко отличающиеся от вещества клетки, в результате химических превращений становятся веществами клетки.

Реакции расщепления. Сложные вещества распадаются на более простые, высокомолекулярные - на низкомолекулярные. Белки распадаются на аминокислоты , крахмал - на глюкозу. Эти вещества расщепляются на еще более низкомолекулярные соединения, и в конце концов образуется совсем простые, бедные энергией вещества - СО2 и Н2О. Реакции расщепления в большинстве случаев сопровождаются выделением энергии. Биологическое значение этих реакций состоит в обеспечении клетки энергией. Любая форма активности - движение, секреция , биосинтез и др. - нуждается в затрате энергии.

Совокупность реакции расщепления называют энергетическим обменом клетки или диссимиляцией. Диссимиляция прямо противоположна ассимиляции: в результате расщепления вещества утрачивают сходство с веществами клетки.

Пластический и энергетический обмены (ассимиляция и диссимиляция) находятся между собой в неразрывной связи. С одной стороны, реакции биосинтеза нуждаются в затрате энергии, которая черпается из реакций расщепления. С другой стороны, для осуществления реакций энергетического обмена необходим постоянный биосинтез, обслуживающих эти реакции ферментов, так как в процессе работы они изнашиваются и разрушаются.

Сложные системы реакций, составляющие процесс пластического и энергетического обменов, тесно связаны не только между собой, но и с внешней средой. Из внешней среды в клетку поступают пищевые вещества, которые служат материалом для реакций пластического обмена, а в реакциях расщепления из них освобождается энергия, необходимая для функционирования клетки. Во внешнюю среду выделяются вещества, которые клеткой больше не могут быть использованы.

Совокупность всех ферментативных реакций клетки, т. е. совокупность пластического и энергетического обменов (ассимиляции и диссимиляции), связанных между собой и с внешней средой, называют обменом веществ и энергии. Этот процесс является основным условием поддержания жизни клетки, источником ее роста, развития и функционирования.

АТФ как единое и универсальное энергетическое вещество. Все проявления жизнедеятельности, все функции клетки осуществляются с затратой энергии. Энергия требует для движения биосинтетических реакций, переноса веществ через клеточные мембраны, для любых форм клеточной активности.

Источником энергии в живых клетках, обеспечивающим все виды их деятельности, является аденозинтрифосфорная кислота (АТФ). Освобождающаяся при расщеплении АТФ энергия обеспечивает любые виды клеточных функций - движение, биосинтез, перенос веществ через мембраны и др. Так как запас АТФ в клетке невелик, то понятно, что по мере убыли АТФ содержание ее должно восстанавливаться. В действительности так и происходит. Биологический смыл остальных реакций энергетического обмена и состоит в том, что энергия, освобождающаяся в результате химических реакций окисления углеводов и других веществ, используется для синтеза АТФ, т. е. для восполнения ее запаса в клетке. При усиленной, но кратковременной работе, например при беге на короткую дистанцию, мышцы работают почти исключительно за счет распада содержащейся в них АТФ. После окончания бега спортсмен усиленно дышит, разогревается: в этот период происходит интенсивное окисление углеводов и других веществ для восполнения убыли израсходованной АТФ. При длительной и не очень напряженной работе содержание АТФ в клетках может существенно не изменяться, так как реакции окисления успевают обеспечить быстрое и полное восстановление израсходованной АТФ.

Итак, АТФ представляет единый и универсальный источник энергии для функциональной деятельности клетки. Отсюда понятно, что возможна передача энергии из одних частей клетки в другие и заготовка энергии впрок. Синтез АТФ может происходить в одном месте клетки и в одно время, а использоваться она может в другом месте и в другое время.

Синтез АТФ осуществляется главным образом в митохондриях. Именно поэтому митохондрии называют "силовыми станциями" клетки. Образовавшаяся здесь АТФ по каналам эндоплазматической сети направляется в те участки клетки, где возникает потребность в энергии.

Этапы энергетического обмена. Для изучения энергетического обмена клетки его удобно разделить на три последовательных этапа. Рассмотрим их на примере животной клетки.

Первый этап подготовительный. На этом этапе крупные молекулы углеводов, жиров, белков, нуклеиновых кислот распадаются на мелкие молекулы: из крахмала образуется глюкоза , из жиров - глицерин и жирные кислоты, из белков - аминокислоты, из нуклеиновых кислот - нуклеотиды . Распад веществ на этом этапе сопровождается незначительным энергетическим эффектом. Вся освобождающаяся при этом энергии рассеивается в виде тепла.

Второй этап энергетического обмена называют бескислородным или неполным. Вещества, образовавшиеся в подготовительном этапе - глюкоза, глицерин, органические кислоты, аминокислоты и др. - вступают на путь дальнейшего распада. Это сложный, многоступенчатый процесс. Он состоит из ряда следующих одна за другой ферментативных реакций. Ферменты , обслуживающие этот процесс, расположены на внутриклеточных мембранах правильными рядами. Вещество, попав на первый фермент этого ряда, передвигается, как на конвейере, на второй фермент, далее - на третий и т. д. Это обеспечивает быстрое и эффективное течение процесса. Разберем его на примере бескислородного расщепления глюкозы, которое имеет специальное название - гликолиза. Гликолиз представляет собой ряд последовательных ферментативных реакций. Его обслуживает 13 различных ферментов, и в ходе его образуется более десятка промежуточных веществ. Многие промежуточные реакции гликолиза идут с участием фосфорной кислоты Н3РО4. В нескольких реакциях участвует АДФ. Не останавливаясь на деталях, укажем лишь, что на начальные ступени ферментного конвейера вступают шестиуглеродная глюкоза, Н3РО4 и АДФ, а с последних сходят трехуглеродная молочная кислота, АДФ и вода . Суммарное уравнение гликолиза должно быть записано так:

С6Н12О6+2Н3РО4+2АДФ =2С3Н6О3+2АТФ+2Н2О

Процесс гликолиза происходит у всех животных клеток и у некоторых микроорганизмов. Всем известное молочнокислое брожение (при скисании молока, образовании простокваши, сметаны, кефира) вызывается молочнокислыми грибами и бактериями. По механизму оно вполне тождественно гликолизу.

У растительных клеток и у некоторых дрожжевых грибов распад глюкозы осуществляется путем спиртового брожения. Спиртовое брожение, как и гликолиз, представляет длинный ряд ферментативных реакций, причем большая часть реакций гликолиза и спиртового брожения полностью совпадают, и только на самых последних этапах есть некоторые различия. В ряде промежуточных реакций спиртового брожения, как и при гликолизе, принимают участие Н3РО4 и АДФ. Конечными продуктами спиртового брожения являются двуокись углерода, этиловый спирт, АТФ и вода. Суммарное уравнение спиртового брожения следует записать так:

С6Н12О6+2Н3РО4+2АДФ = 2СО2+2С2Н5ОН+2АТФ+2Н2О

Из приведенных уравнений гликолиза и спиртового брожения видно, что в этих процессах не участвует кислород, поэтому их назвают бескислородными, или с неполным расщеплением, так как полное расщепление - это расщепление до конца, т. е. превращение глюкозы в простейшие соединения - СО2 и Н2О, что соответствует уравнению

С6Н12О6+6О2= 6СО2+6Н2О

Наконец, и это особенно важно, из уравнений следует, что при распаде одной молекулы глюкозы в ходе гликолиза и спиртового брожения образуются две молекулы АТФ. Следовательно, распад глюкозы в процессе гликолиза и спиртового брожения сопряжен с синтезом универсального энергетического вещества АТФ.

Так как синтез АТФ представляет эндотермический процесс, то, очевидно, энергия для синтеза АТФ черпается за счет энергии реакций бескислородного расщепления глюкозы. Следовательно, энергия, освобождающаяся в ходе реакций гликолиза, не вся переходит в тепло. Часть ее идет на синтез двух богатых энергией фосфатных связей.

Произведем несложный расчет: всего в ходе бескислородного расщепления грамм-молекулы глюкозы, освобождается 200 кдж (50 ккал). На образование одной связи, богатой энергией, при превращении грамм-молекулы АДФ и АТФ затрачивается 40 кдж (10 ккал).

В ходе бескислородного расщепления образуются две такие связи. Таким образом, в энергию двух грамм-молекул АТФ переходит 2Х40=80 кдж (2Х10=20 ккал). Итак, из 200 кдж (50 ккал) только 80 (20) сберегаются в виде АТФ, а 120 (30 ккал) рассеиваются в виде тепла. Следовательно, в ходе бескислородного расщепления глюкозы 40% энергии сберегается клеткой.

Третий этап энергетического обмена - стадия кислород-ного, или полного расщепления, или дыхания. Продукты, возникшие в предшествующей стадии, окисляются до конца, т. е. до СО2 и Н2О.

Основное условие осуществления этого процесса - наличие в окружающей среде кислорода и поглощение его клеткой. Стадия кислородного расщепления, как и предыдущая стадия бескислородного расщепления, представляет собой ряд последовательных ферментативных реакций. Каждая реакция катализируется особым ферментом.

Весь ферментативный ряд кислородного расщепления сосредоточен в митохондриях, где ферменты расположены на мембранах правильными рядами. Сущность каждой из реакций состоит в окислении органической молекулы, которая с каждой ступенью постепенно разрушается и превращается в конечные продукты окисления - СО2 и Н2О.

Все промежуточные реакции кислородного расщепления, как и промежуточные реакции бескислородного процесса, идут с освобождением энергии. Количество энергии, освобождаемой на каждой ступени при кислородном процессе, много больше, чем на каждой ступени бескислрородного процесса. В сумме кислородное расщепление дает громадную величину - 2600 кдж (650 ккал). Если бы вся эта энергия освободилась в результате одной реакции, клетка подверглась бы тепловому повреждению. При рассредоточении процесса на ряд промежуточных звеньев такой опасности нет.

Подробное исследование реакций кислородного расщепления показало, что в этих реакциях, как и в реакциях бескислородного процесса, принимает участие Н3РО4 и АДФ и что кислородный процесс, как и бескислородный, сопряжен с синтезом АТФ. В ходе кислородного расщепления двух трехуглеродных молекул происходит образование 36 молекул АТФ - 36 богатых энергией фосфатных связей. Таким образом, суммарное уравнение кислородного процесса можно записать так:

2С3Н6О3+6О2+36Н3РО4+36АДФ =6СО2+6Н2О+36АТФ+36Н2О, а суммарное уравнение полного расщепления глюкозы так:

С6Н12О6+6О2+38Н3РО4+38АДФ =6СО2+6Н2О+38АТФ+38Н2О

Теперь должно быть ясно значение для клетки третьей, кислородной стадии энергетического обмена. Если в ходе бескислородного расщепления освобождается 200 кдж/моль (50 ккал/моль) глюкозы, то в стадии кислородного процесса освобождается 2600 кдж (650 ккал), т. е. в 13 раз больше. Если в ходе бескислородного расщепления синтезируются две молекулы АТФ, то в кислородную стадию их образуется 36, т. е. в 18 раз больше. Иными словами, в ходе расщепления глюкозы в клетке на стадии кислородного процесса освобождается и преобразуется в другие формы энергии свыше 90% энергии глюкозы.

Займемся снова расчетом. Всего в процессе расщепления глюкозы до СО2 и Н2О, т. е. в ходе кислородного и бескислородного процессов, синтезируется 2+36=38 молекул АТФ. Таким образом, в потенциальную энергию АТФ переходит 38 Х 40=1520 кдж (38 Х 10=380 ккал). Всего при расщеплении глюкозы (в бескислродную и кислородную стадии) освобождается 200+2600=2800 кдж (50+650= 700 ккал). Следовательно, почти 55% всей энергии, освобождаемой при расщеплении глюкозы, сберегается клеткой в форме АТФ. Остальная часть (45%) рассеивается в виде тепла. Чтобы оценить значение этих цифр, вспомним, что в паровых машинах из энергии, освобождаемой при сгорании угля, в полезную форму преобразуется не более 12 - 15%. В двигателях внутреннего сгорания он достигает примерно 35%. Таким образом, по эффективности преобразования энергии живая клетка превосходит все известные преобразователи энергии в технике.

При сопоставлении количества энергии, освобождаемой в ходе бескислородного и кислородного расщепления глюкозы, а также числа молекул АТФ, синтезируемых в обе стадии, видно, что кислородный процесс несравненно более эффективен, чем бескислородный. Вполне понятно поэтому, что в нормальных условиях для мобилизации энергии в клетке всегда используется как бескислородный, так и кислородный путь расщепления. Если осуществление кислородного процесса затруднено или вовсе невозможно, например при недостатке кислорода, тогда для поддержания жизни остается только бескислородный процесс. Но при этом для получения АТФ в количестве, необходимом для жизнедеятельности, клетке приходится расщеплять очень большое количество глюкозы.

Дыхание и горение. Окисление органических веществ, происходящее в клетке, часто сравнивают с горением: в обоих случаях происходит поглощение кислорода и выделение СО2 и Н2О. Однако между этими процессами имеются глубокие различия. Дыхание представляет высокоупорядоченный, многоэтапный процесс. Благодаря участию в нем ферментов оно идет с достаточной скоростью при температуре, несравненно более низкой, чем горение. Принципиально отличается в обоих процессах способ преобразования химической энергии расщепляемых веществ. При горении вся энергия переходит в тепловую. Дальнейшее использование ее для производства работы всегда происходит с низким к. п. д. При биологическом окислении главная часть энергии переходит в химическую энергию универсального энергетического вещества - АТФ, которое в дальнейшем используется клеткой с к. п. д., недостижимым для тепловых двигателей.

Обмен веществ (метаболизм) - это совокупность всех химических реакций, которые происходят в организме. Все эти реакции делятся на 2 группы


1. Пластический обмен (ассимиляция, анаболизм, биосинтез) - это когда из простых веществ с затратой энергии образуются (синтезируются) более сложные. Пример:

  • При фотосинтезе из углекислого газа и воды синтезируется глюкоза.

2. Энергетический обмен (диссимиляция, катаболизм, дыхание) - это когда сложные вещества распадаются (окисляются) до более простых, и при этом выделяется энергия , необходимая для жизнедеятельности. Пример:

  • В митохондриях глюкоза, аминокислоты и жирные кислоты окисляются кислородом до углекислого газа и воды, при этом образуется энергия (клеточное дыхание)

Взаимосвязь пластического и энергетического обмена

  • Пластический обмен обеспечивает клетку сложными органическими веществами (белками, жирами, углеводами, нуклеиновыми кислотами), в том числе белками-ферментами для энергетического обмена.
  • Энергетический обмен обеспечивает клетку энергией. При выполнении работы (умственной, мышечной и т.п.) энергетический обмен усиливается.

АТФ – универсальное энергетическое вещество клетки (универсальный аккумулятор энергии). Образуется в процессе энергетического обмена (окисления органических веществ).

  • При энергетическом обмене все вещества распадаются, а АТФ - синтезируется. При этом энергия химических связей распавшихся сложных веществ переходит в энергию АТФ, энергия запасается в АТФ .
  • При пластическом обмене все вещества синтезируются, а АТФ - распадается. При этом расходуется энергия АТФ (энергия АТФ переходит в энергию химических связей сложных веществ, запасается в этих веществах).

Выберите один, наиболее правильный вариант. В процессе пластического обмена
1) более сложные углеводы синтезируются из менее сложных
2) жиры превращаются в глицерин и жирные кислоты
3) белки окисляются с образованием углекислого газа, воды, азотсодержащих веществ
4) происходит освобождение энергии и синтез АТФ

Ответ


Выберите три варианта. Чем пластический обмен отличается от энергетического?
1) энергия запасается в молекулах АТФ
2) запасенная в молекулах АТФ энергия расходуется
3) органические вещества синтезируются
4) происходит расщепление органических веществ
5) конечные продукты обмена - углекислый газ и вода
6) в результате реакций обмена образуются белки

Ответ


Выберите один, наиболее правильный вариант. В процессе пластического обмена в клетках синтезируются молекулы
1) белков
2) воды
3) АТФ
4) неорганических веществ

Ответ


Выберите один, наиболее правильный вариант. В чем проявляется взаимосвязь пластического и энергетического обмена
1) пластический обмен поставляет органические вещества для энергетического
2) энергетический обмен поставляет кислород для пластического
3) пластический обмен поставляет минеральные вещества для энергетического
4) пластический обмен поставляет молекулы АТФ для энергетического

Ответ


Выберите один, наиболее правильный вариант. В процессе энергетического обмена, в отличие от пластического, происходит
1) расходование энергии, заключенной в молекулах АТФ
2) запасание энергии в макроэргических связях молекул АТФ
3) обеспечение клеток белками и липидами
4) обеспечение клеток углеводами и нуклеиновыми кислотами

Ответ


1. Установите соответствие между характеристикой обмена и его видом: 1) пластический, 2) энергетический. Запишите цифры 1 и 2 в правильном порядке.
А) окисление органических веществ
Б) образование полимеров из мономеров
В) расщепление АТФ
Г) запасание энергии в клетке
Д) репликация ДНК
Е) окислительное фосфорилирование

Ответ


2. Установите соответствие между характеристикой обмена веществ в клетке и его видом: 1) энергетический, 2) пластический. Запишите цифры 1 и 2 в порядке, соответствующим буквам.
А) происходит бескислородное расщепление глюкозы
Б) происходит на рибосомах, в хлоропластах
В) конечные продукты обмена – углекислый газ и вода
Г) органические вещества синтезируются
Д) используется энергия, заключенная в молекулах АТФ
Е) освобождается энергия и запасается в молекулах АТФ

Ответ


3. Установите соответствие между признаками обмена веществ у человека и его видами: 1) пластический обмен, 2) энергетический обмен. Запишите цифры 1 и 2 в правильном порядке.
А) вещества окисляются
Б) вещества синтезируются
В) энергия запасается в молекулах АТФ
Г) энергия расходуется
Д) в процессе участвуют рибосомы
Е) в процессе участвуют митохондрии

Ответ


4. Установите соответствие между характеристиками обмена веществ и его видом: 1) энергетический, 2) пластический. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) репликация ДНК
Б) биосинтез белка
В) окисление органических веществ
Г) транскрипция
Д) синтез АТФ
Е) хемосинтез

Ответ


5. Установите соответствие между характеристиками и видами обмена: 1) пластический, 2) энергетический. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) запасается энергия в молекулах АТФ
Б) синтезируются биополимеры
В) образуются углекислый газ и вода
Г) происходит окислительное фосфорилирование
Д) происходит репликация ДНК

Ответ


Выберите три процесса, относящихся к энергетическому обмену веществ.
1) выделение кислорода в атмосферу
2) образование углекислого газа, воды, мочевины
3) окислительное фосфорилирование
4) синтез глюкозы
5) гликолиз
6) фотолиз воды

Ответ


Выберите один, наиболее правильный вариант. Энергия, необходимая для мышечного сокращения, освобождается при
1) расщеплении органических веществ в органах пищеварения
2) раздражении мышцы нервными импульсами
3) окислении органических веществ в мышцах
4) синтезе АТФ

Ответ


Выберите один, наиболее правильный вариант. В результате какого процесса в клетке синтезируются липиды?
1) диссимиляции
2) биологического окисления
3) пластического обмена
4) гликолиза

Ответ


Выберите один, наиболее правильный вариант. Значение пластического обмена – снабжение организма
1) минеральными солями
2) кислородом
3) биополимерами
4) энергией

Ответ


Выберите один, наиболее правильный вариант. Окисление органических веществ в организме человека происходит в
1) легочных пузырьках при дыхании
2) клетках тела в процессе пластического обмена
3) процессе переваривания пищи в пищеварительном тракте
4) клетках тела в процессе энергетического обмена

Ответ


Выберите один, наиболее правильный вариант. Какие реакции обмена веществ в клетке сопровождаются затратами энергии?
1) подготовительного этапа энергетического обмена
2) молочнокислого брожения
3) окисления органических веществ
4) пластического обмена

Ответ


1. Установите соответствие между процессами и составляющими частями метаболизма: 1) анаболизм (ассимиляция), 2) катаболизм (диссимиляция). Запишите цифры 1 и 2 в правильном порядке.
А) брожение
Б) гликолиз
В) дыхание
Г) синтез белка
Д) фотосинтез
Е) хемосинтез

Ответ


2. Установите соответствие между характеристиками и процессами обмена веществ: 1) ассимиляция (анаболизм), 2) диссимиляция (катаболизм). Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) синтез органических веществ организма
Б) включает подготовительный этап, гликолиз и окислительное фосфорилирование
В) освобожденная энергия запасается в АТФ
Г) образуются вода и углекислый газ
Д) требует энергетических затрат
Е) происходит в хлоропластах и на рибосомах

Ответ


Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Обмен веществ – одно из основных свойств живых систем, он характеризуется тем, что происходит
1) избирательное реагирование на внешние воздействия окружающей среды
2) изменение интенсивности физиологических процессов и функций с различными периодами колебаний
3) передача из поколения в поколение признаков и свойств
4) поглощение необходимых веществ и выделение продуктов жизнедеятельности
5) поддержание относительно-постоянного физико-химического состава внутренней среды

Ответ


1. Все приведенные ниже термины, кроме двух, используются для описания пластического обмена. Определите два термина, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) репликация
2) дупликация
3) трансляция
4) транслокация
5) транскрипция

Ответ


2. Все перечисленные ниже понятия, кроме двух, используют для описания пластического обмена веществ в клетке. Определите два понятия, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) ассимиляция
2) диссимиляция
3) гликолиз
4) транскрипция
5) трансляция

Ответ


3. Перечисленные ниже термины, кроме двух, используются для характеристики пластического обмена. Определите два термина, выпадающих из общего списка, и запишите цифры, под которыми они указаны.
1) расщепление
2) окисление
3) репликация
4) транскрипция
5) хемосинтез

Ответ


Выберите один, наиболее правильный вариант. Азотистое основание аденин, рибоза и три остатка фосфорной кислоты входят в состав
1) ДНК
2) РНК
3) АТФ
4) белка

Ответ


Все приведённые ниже признаки, кроме двух, можно использовать для характеристики энергетического обмена в клетке. Определите два признака, «выпадающих» из общего списка, и запишите в ответ цифры, под которыми они указаны.
1) идёт с поглощением энергии
2) завершается в митохондриях
3) завершается в рибосомах
4) сопровождается синтезом молекул АТФ
5) завершается образованием углекислого газа

Ответ


Найдите три ошибки в приведенном тексте. Укажите номера предложений, в которых они сделаны. (1) Обмен веществ, или метаболизм, – это совокупность реакций синтеза и распада веществ клетки и организма, связанных с выделением или поглощением энергии. (2) Совокупность реакций синтеза высокомолекулярных органических соединений из низкомолекулярных соединений относят к пластическому обмену. (3) В реакциях пластического обмена синтезируются молекулы АТФ. (4) Фотосинтез относят к энергетическому обмену. (5) В результате хемосинтеза синтезируются органические вещества из неорганических за счет энергии Солнца.

Ответ

© Д.В.Поздняков, 2009-2019

Работа всех систем в организме непрерывна. В нём постоянно протекают сложные химические реакции, обеспечивающие нормальную жизнедеятельность. Одним из самых важных процессов является обмен веществ и энергии, то есть метаболизм.

Именно благодаря ему, клетки сохраняют постоянство состава, растут, функционируют, а также обновляются. Процесс этот непростой и состоит из двух видов обмена - пластического и энергетического, которые, в свою очередь, имеют несколько стадий.

Вконтакте

Одноклассники

В организме непрерывно происходит как расщепление сложных веществ на более простые, так и синтез необходимых соединений из различных элементов. В результате первого типа реакций, который называется энергетическим обменом, или катаболизмом, тело человека получает необходимую для нормального функционирования энергию. Но её часть расходуется на создание новых соединений, которые нужны для жизнедеятельности. Такой процесс носит название пластического обмена, или анаболизма.

Энергетический обмен

Катаболизм , называемый также диссимиляцией , происходит вплоть до того момента, пока все питательные вещества, поступившие в организм, не расщепятся до углекислого газа, воды или других простых соединений, которые уже нельзя использовать.

Этот процесс аналогичен горению, ведь в его результате выделяются те же вещества. Но он происходит с куда большей скоростью и не нуждается в высоких температурах. Кроме того, важным отличием является то, что энергия не переходит в тепловую, чтобы безвозвратно рассеяться, а запасается для дальнейших нужд организма. Это делает процесс невероятно эффективным и уникальным.

Распад веществ для получения организмом энергии - это то, что характеризует энергетический обмен в клетке. Происходит он в несколько стадий:

  • подготовительная;
  • неполная (анаэробное дыхание);
  • аэробное дыхание.

Каждая из этих стадий имеет свои особенности и играет важную роль в метаболизме в целом. Далее будет более подробно рассказано про каждую из них.

Подготовительный этап

Единственная из стадий, которая протекает в желудочно-кишечном тракте. Она заключается в пищеварении, то есть распаде сложных органических соединений на простые. Распад у сложных организмов осуществляется под действием пищеварительных ферментов, а у одноклеточных - с помощью лизосом. При этом белки распадаются на аминокислоты, жиры - на алифатические карбоновые кислоты и глицерин, углеводы - на сахариды, нуклеиновые кислоты - на нуклеотиды .

При всех этих процессах дополнительно выделяется энергия в виде тепла, но не в самых больших количествах. Далее процессы происходят на клеточном уровне.

Анаэробное дыхание

Эта стадия называется также гликолизом применительно к царству животных, или брожением , если имеются в виду растения и микроорганизмы. Весь процесс происходит в цитоплазме клеток за счёт работы ферментов.

Он продолжает предыдущую стадию тем, что из моносахарида, коим является глюкоза, выделяются ещё более простые вещества - спирт и углекислый газ, а также кислоты.

Этот вид обмена универсален для всех организмов и используется даже в повседневной жизни. Поскольку он протекает и в бактериях, его широко применяют в пищевой промышленности: дрожжи производят этиловый спирт, кисломолочные бактерии - молочную кислоту, а животные клетки - пировиноградную. В некоторых микроорганизмах выделяется ацетон и этановая кислота.

При этом также выделяется энергия, часть которой запасается в двух молекулах аденозинтрифосфата (АТФ), и некоторое количество рассеивается с выделением тепла. Но двух молекул АТФ недостаточно для полноценной работы организма, поэтому за анаэробным этапом последует кислородное расщепление.

Аэробное дыхание

Другие названия этого этапа - клеточное дыхание , или кислородное расщепление . Как видно из названия, процесс невозможен без кислорода, который выступает в роли окислителя продуктов распада глюкозы. Помимо кислорода, в работе участвует фосфорная кислота и аденозиндифосфат (АДФ). Под действием ферментов они без повышения температуры моментально сжигают органические вещества до углекислого газа и воды.

Благодаря окислению из одной молекулы вещества (образовавшиеся на предыдущем этапе молочная, пировиноградная кислоты и так далее) клетка получает 18 АТФ, каждая из которых служит мощным источником энергии. Этот этап происходит в митохондриях клетки и является самым важным во всём энергетическом обмене, так как обеспечивает клетку большим количеством АТФ.

Пластический обмен

Пластический обмен ещё называется анаболизмом, ассимиляцией и биосинтезом. Он является не менее важной составляющей метаболизма, ведь именно пластический обмен в клетке характеризуется синтезом новых веществ, что обеспечивает образование ферментов, гормонов, а также белков, липидов и других веществ, участвующих в построении клеток, межклеточного пространства и других составляющих организма. Так же, как и энергетический обмен, он является сложным и протекает во многих организмах. Далее будут приведены примеры и процессы пластического обмена.

  • , который свойственен растениям, а также некоторым бактериям. Они называются автотрофами, поскольку способны самостоятельно синтезировать необходимые для жизни органические вещества из неорганических соединений.
  • Хемосинтез протекает у бактерий, называемых хемотрофами. И они также могут обеспечивать себя необходимыми органическими соединениями. Для их жизнедеятельности не нужен кислород, они используют диоксид углерода.
  • Биосинтез белков осуществляется в живых организмах. К ним относятся и гетеротрофы, которые, в отличие от двух предыдущих упоминаемых форм, неспособны самостоятельно обеспечивать себя органическими веществами, а поэтому получают их с помощью других организмов.

Остановимся на этих процессах более подробно.

Процесс, без которого не была бы возможна жизнь на Земле. Многим формам жизни для дыхания нужен кислород взамен выдыхаемого ими в воздух углекислого газа. Этим важным веществом нас обеспечивают растения, в зелёных листьях которых содержатся хлоропласты. Их окружает пара мембран, поскольку внутри хлоропласта в цитоплазме содержатся ценные граны с собственными защитными оболочками. В этих стопках тилакоидов, в свою очередь, присутствует хлорофилл, отвечающий за цвет растения, но главное - делающий процесс фотосинтеза возможным.

Осуществляется он посредством соединения шести молекул углекислого газа с водой, в результате чего образуется глюкоза. Побочным продуктом реакции является жизненно необходимый кислород. Процесс возможен только на свету, при использовании солнечной энергии.

Хемосинтез

Хемосинтез протекает у микроорганизмов, также способных к самостоятельному преобразованию неорганических соединений в органические. К ним относятся:

Окисление углекислого газа происходит без участия кислорода, с использованием запасённой ранее энергии. Из диоксида углерода синтезируются органические вещества, необходимые для жизнедеятельности.

Биосинтез белков

Сложный процесс, направленный на разложение попадающих в организм белков на составляющие, из которых впоследствии синтезируются собственные уникальные белки. Состоит из двух стадий.

Транскрипция - процесс, состоящий из трёх этапов (образование транскрипта, процессинг, сплайсинг), которые происходят в ядре клетки. Они направлены на создание информационной РНК (иРНК) из ДНК. В результате новый полимер полностью копирует небольшой участок нити ДНК с той разницей, что тимину в нём эквивалентен урацил.

Трансляция - перенос информации с синтезированной на предыдущем этапе молекулы РНК на строящийся полипептид с указаниями о его будущей структуре. Процесс происходит на рибосомах, расположенных в цитоплазме клетки. Они имеют овальную форму и состоят из частей, которые могут соединяться только при наличии иРНК. Сам перенос информации осуществляется в несколько этапов.

Итак, все вещества, поступающие в живой организм, распределяются в нём так, чтобы приносить ему пользу. Сложные распадаются с выделением энергии, необходимой для дальнейшей жизнедеятельности (например, выполнение физической или умственной работы человеком), запасаемой в АТФ. А из простых веществ организм синтезирует новые соединения с использованием энергии, накопившейся в универсальном источнике - молекуле той самой АТФ. При этом энергия не расходуется безвозвратно - она запасается в новых соединениях.

Диссимиляция и ассимиляция в корне отличаются друг от друга, но при этом они неразрывно связаны. Ведь именно катаболизм даёт энергию, без которой невозможен анаболизм, то есть синтез необходимых организму веществ. Вот почему эти два процесса являются очень важными.

Основными видами пластического обмена являются: 1) белковый; 2) углеводный;

3) липидный; 4) нуклеиновый.

Белковый обмен характеризуется катаболизмом и анаболизмом. В процессе катаболизма бактерии разлагают белки под действием протеаз с образованием пептидов. Под действием пептидаз из пептидов образуются аминокислоты.

Распад белков в аэробных условиях называется тлением, в анаэробных – гниением. В результате распада аминокислот клетка получает ионы аммония, необходимые для формирования собственных аминокислот. Бактериальные клетки способны синтезировать все 20 аминокислот. Ведущими из них являются аланин, глютамин, аспарагин. Они включаются в процессы переаминирования и трансаминирования. В белковом обмене процессы синтеза преобладают над распадом, при этом происходит потребление энергии.

В углеводном обмене у бактерий катаболизм преобладает над анаболизмом. Сложные углеводы внешней среды могут расщеплять только те бактерии, которые выделяют ферменты – полисахаридазы. Полисахариды расщепляются до дисахаров, которые под действием олигосахаридаз распадаются дл моносахаров, причем внутрь клетки может поступать только глюкоза. Часть ее идет на синтез собственных полисахаридов в клетке, другая часть подвергается дальнейшему расщеплению, который может идти по двум путям: по пути анаэробного распада углеводов-брожению (гликолизу) и в аэробных условиях – по пути горения.

В зависимости от конечных продуктов выделяют следующие виды брожения:

1) спиртовое (характерно для грибов);

2) пропионионово-кислое (характерно для клостридий, пропиони-бактерий);

3) молочнокислое (характерно для стрептококков);

4) маслянокислое (характерно для сарцин);

5) бутилденгликолевое (характерно для бацилл).

Наряду с основным анаэробным распадом (гликолизом) могут быть вспомогательные пути расщепления углеводов (пентозофосфатный, кетодезоксифосфоглюконатный). Они отличаются ключевыми продуктами и реакциями.

Липидный обмен осуществляется с помощью ферментов – липопротеиназ, летициназ, липаз, фосфолипаз.

Липазы катализируют распад нейтральных жирных кислот, т.е. ответственны за отщепление этих кислот от глицерина. При распаде жирных кислот клетка запасает энергию. Конечным продуктом распада является ацетил-КоА.

Биосинтез липидов осуществляется за счет ацетилпереносящих белков. При этом ацетильный остаток переходит на глицерофосфат с образованием фосфатидных кислот, а они уже вступают в химические реакции с образованием сложных эфиров со спиртами. Эти превращения лежат в основе синтеза фосфолипидов.

Бактерии способны синтезировать как насыщенные, так и ненасыщенные жирные кислоты, но синтез последних более характерен для аэробов, так как требут кислорода.

Нуклеиновый обмен бактерий связан с генетическим обменом. Синтез нуклеиновых кислот имеет значение для процесса деления клетки. Синтез осуществляется с помощью ферментов: рестриктазы, ДНК-полимеразы, лигазы, ДНК-зависимой-РНК-полимеразы.

Рестриктазы вырезают участки ДНК, убирая нежелательные вставки, а лигазы обеспечивают сшивку фрагментов нуклеиновой кислоты. ДНК-полимеразы ответственны за репликацию дочерней ДНК по материнской. ДНК-зависимые-РНК-полимеразы отвечают за транскрипцию, осуществляют построение РНК на матрице ДНК.

Конец работы -

Эта тема принадлежит разделу:

Медицинская микробиология, вирусология и иммунология

Тульский государственный университет.. кафедра санитарно гигиенических и профилактических.. честнова т в смольянинова о л..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Краткая история развития микробиологии
Заслуга открытия микроорганизмов принадлежит голландскому натуралисту А. Левенгуку (1632-1723г.г.), создавшему первый микроскоп с увеличением в 300 раз. В 1695г. он издал книгу «Тайны природы» с ри

Микробиологические лаборатории, их оборудование, основы техники безопасности и правила работы в них
Микробиологическая лаборатория – это учебное, научное или производственное учреждение или же структурное подразделение учреждения/предприятия, выполняющее экспериментальные, диагностические

Микроскопы, их устройство, техника микроскопирования микроорганизмов, правила обращения с микроскопом. Виды микроскопии
Для обнаружения и исследования микроорганизмов применяют световые микроскопы разных моделей («МБИ-1», «Биолам», «Бимам», «Микмед»). Для изучения более мелких объектов (вирусов) исп

Методы приготовления и окрашивания микроскопических препаратов
Микроскопический метод исследования предусматривает наблюдение за живыми и убитыми бактериями в окрашенном и неокрашенном состоянии. С целью изучения формы и подвижности ба

Рост и размножение микроорганизмов. Фазы роста
Рост бактерий –это увеличение бактериальной клетки в размерах без увеличения числа особей в популяции. Рост клетки не беспределен. После достижения критических размеров клетка подв

Питание бактерий
Под питанием понимают процессы поступления и выведения питательных веществ в клетку и из клетки. Питание в первую очередь обеспечивает размножение и метаболизм клетки. Среди необходимых пи

Метаболизм бактериальной клетки
В процессе метаболизма выделяют два вида обмена: 1) пластический (конструктивный): анаболизм (с затратами энергии), катаболизм (с выделением энергии); 2) энергетический обмен (протекает в дыхательн

Принципы и методы выделения чистых культур. Ферменты бактерий, их идентификация. Внутривидовая идентификация (эпидемиологическое маркирование)
Чистой культурой микробов называют популяцию микроорганизмов одного вида, полученную из изолированной микробной колонии. Под микробной колонией подразумевает­ся потомство бактерий,

Рост бактерий с равномерным помутнением среды
2. Придонный рост бактерийхарактеризуется обра­зованием осадка на дне пробирки с жидкой питательной сре­дой. Осадок может быть скудным или обильным, крошковидным, гомогенным, волок

Особенности физиологии грибов, простейших, вирусов и их культивирование
Грибы по типу питания – гетеротрофы, по отношению к кислороду – аэробы и факультативные анаэробы. Культивирование грибов производится в аэробных условиях при температуре 22-370С

Влияние физических факторов
Влияние температуры. Низкие температуры микробы переносят сравнительно легко. Холерный вибрион не теряет жизнеспособности от температуры -320С; некоторые виды бактерий о

Влияние химических веществ
Химические вещества могут оказывать различное действие на микроорганизмы: служить источником питания, не оказывать какого-либо действия, стимулировать или подавлять рост, вызывать гибель. Антимикро

Влияние биологических факторов
Микроорганизмы находятся в различных взаимоотношениях друг с другом. Совместное существование двух различных организмов называется симбиозом. Различают несколько вариантов полезных взаимоотношений:

Понятие о стерилизации, дезинфекции, асептике и антисептике. Методы стерилизации, аппаратура. Контроль качества дезинфекции
Стерилизация– полная инактивация микробов в объектах, подвергающихся обработке. Существует 3 основных метода стерилизации: тепловая, лучевая, химическая. Тепловая

Нормофлора, ее значение для микроорганизма. Понятие о транзиторной флоре. Понятие о дисбиотических состояниях. Их оценка. Методы коррекции
Организм человека заселен (колонизирован) примерно 500 видами микроорганизмов, соствляющих его нормальную микрофлору в виде сообщества микроорганизмов (микробиоценоз). Они находятся в состоянии рав

Строение бактериального генома. Фенотипическая и генотипическая изменчивость микроорганизмов. Мутации. Модификации
Наследственный аппарат бактерий представлен одной хромосомой, которая представляет собой молекулу ДНК, она спирализована и свернута в кольцо. Это кольцо в одной точке прикреплено к

Генотипические рекомбинации микроорганизмов. Основы генной инженерии. Практическое применение
Рекомбинации– обмен генетическим материалом между двумя особями с появлением рекомбинантных особей с измененным генотипом. У бактерий существует несколько механизмов рекомбинаций:

Генетическая инженерия и область ее применения в биотехнологии
Генетическая инженерия является сердцевиной биотехнологии. Она, по существу, сводится к генетической рекомбинации, т.е. к обмену генами между двумя хромосомами. Метод рекомбинации in vitro или гене

Диско-диффузный метод
Для исследования можно использовать стандартные питательные среды: отечественные среды АГВ №1, №2 и зарубежные – Мюллер-Хинтон агар. На поверхность подсушенной питательной среды в чашке Пе

Патогенность и вирулентность. Факторы патогенности
Среди бактерий по способности вызывать заболевания выделяют: 1)патогенные; 2) условно-патогенные; 3) сапрофитные. Патогенные виды потенциально способны вызывать инфекционн

Токсины бактерий, их природа, свойства, получение
Токины бактерий –продукты метаболизма, оказывающие непосредственное токсическое воздействие на специфические клетки макроорганизма, либо опосредованно вызывающие развитие симптомов


Эпидемический процесс – это процесс возникновения и распространения среди населения специфических инфекционных состояний – от бессимптомного носительства до манифестных заболеваний

Понятие об иммунитете. Виды иммунитета. Неспецифические факторы защиты
Иммунология – это наука, предметом изучения которой является иммунитет. Инфекционная иммунология изучает закономерности иммунной системы по отношению к микробным агентам, специфические мех

Центральные и периферические органы иммунной системы. Клетки иммунной системы. Формы иммунного ответа
Органы иммунной системы делят на: 1) первичные (центральные) – вилочковая железа, костный мозг – являются местами дифференцировки популяций лимфоцитов; 2) вторичные (периферические)

Комплемент, его структура, функции, пути активации. Роль в иммунитете
Комплимент является одним из важных факторов гуморального иммунитета, играющим роль в защите организма от антигенов. Он был открыт в 1899г. французским иммунологом Борде, назвавшим его «алексином».

Антигены бактерий
Существуют следующие разновидности бактериальных антигенов: группоспецифические (встречаются у разных видов одного рода или семейства); видоспецифические (встречаются у различных представителей одн

Серологические реакции и их применение
Взаимодействие антитела с антигеном являются основой диагностических реакций в лабораториях. Реакция между АГ и АТ состоит из специфической и неспецифической фазы. В специфическую фазу происходит б

Определения групп крови
Применяются различные варианты реакции агглютинации: развернутая, ориентировочная Для определения у больного антител ставят в пробирках развернутую реакцию

Иммунодефицитные состояния. Аллергические реакции. Аутоиммунные процессы
Иммунодефицитными состояниями называют нарушения иммунного статуса и способности к нормальному иммунному ответу на разные антигены. Эти нарушения обусловлены дефектами одного или нескольких звеньев

Иммунопрофилактика, иммунотерапия
Иммунопрофилактика и иммунотерапия являются разделами иммунологии, которые изучают и разрабатывают способы и методы специфической профилактики, лечения и диагностики инфекционных и неинфекционных б

Сальмонеллы
Относятся к семейству Enterobacteriaceae, роду Salmonella, который состоит из двух видов: S. enterica- возбудители заболеваний человека и животных

Факторы патогенности
1. белок наружной мембраны инвазин – обеспечивает резистентность к фагоцитозу; 2. фермент супероксиддисмутаза – антифагоцитарная активность сальмонелл; 3. эндотоксин – развитие ли

Шигеллы
Возбудители дизентерии относятся к семейству Enterobacteriaceae, роду Shigella, который включает 4 вида, отличающихся по биохимическим свойствам и антигенной структуре: S. dysenteriae, S. flexneri,

Эшерихии
Возбудитель эшерихиозов относится к семейству Enterobacteriaceae, роду Escherichia, который включает несколько видов. В патологии человека имеет значение только вид E. сoli. Эшерихии

Холерный вибрион
Холера –особо опасная карантинная болезнь, вызываемая Vibrio cholerae, серогрупп О1 и О139, характеризующаяся токсическим поражением тонкого кишечника, нарушением

Иерсинии
К энтеропатогенным иерсиниям относят возбудителей псевдотуберкулеза и кишечного иерсиниоза. Возбудители данных заболеваний относятся к семейству Enterobacteriaceae, роду Ye

Общая характеристика и возбудители ПТИ
Пищевые токсикоинфекции (ПТИ) бактериальной этиологии подразделяются на токсикоинфекции, токсикозы (интоксикации). К основным возбудителям ПТИ относятся: кишечная палочка, протей, клебсиел

Ботулизм
Возбудителем заболевания является – Cl. Botulinum, который относится к семейству Bacillaceae, роду Clostridium. Основным фактором вирулентности является продукция экзотоксина – самый сильный из все


Материал для исследования: кровь, промывные воды желудка, рвотные массы, испражнения, остатки пищевых продуктов. Методы лабораторной диагностики

Патогенные кокки
Стафилококкиявляются возбудителями гнойничковых заболеваний кожи, фурункулов, абсцессов, флегмон. Наиболее часто стафилококковые заболевания наблюдаются у рожениц и новорожденных (

Факторы патогенности
1. мембраноповреждающие экзотоксины (повреждающие эритроциты, лейкоциты, макрофаги); 2. энтеротоксины- вызывают ОКИ; 3. эксфолиативный токсин- пузырчатка новорожденных; 4

Факторы патогенности
1. адгезия; 2. М-белок (нарушает процессы фагоцитоза- из-за сходства в строении с АГ сердечной и почечной ткани становится причиной аутоиммунных процессов, вызывает множественную активацию

Грамотрицательные бактерии
Гемофильная палочкаотносится к семейству Pasterellaceae, роду Haemophilus, виду Н. influenza. Это мелкие или средних размеров прямые палочки, неспорообразующие, неподвижные, грамот

Раневые анаэробные клостридиальные и неклостридиальные инфекции
Спорообразующие анаэробы (клостридии) относятся к отделу Firmicutes, семейству Bacillaceae, роду Clostridium. Клостридии–это грамположительные палочки, которые образуют ов

Неклостридиальные анаэробы
Входят в состав нормальной микрофлоры организма человека, являются условно-патогенными микроорганизмами. Вызывают гнойно-воспалительные заболевания, возникающие как эндогенная инфекция или послеопе

Коринебактерии
Коринебактерии относятся к семейству Corynebacteriaceae, роду Corynebacterium, виду C. Diphtheriae. Это тонкие палочки, прямые или слегка изогнутые, грамположительные. Для них характерен полиморфиз

Бордетеллы
Возбудителями коклюша и паракоклюша являются B. Pertussis и B parapertussis соответственно. Это мелкие кокковидные грамотрицательные палочки с закругленными концами биполярно окрашенные. Неподвижны

Менингококки
Менингококки относится к семей­ству Neisseriaceae, роду Neisseria, виду Neisseria meningitidis. Экологической нишей является слизистая оболочка носоглотки человека. Neisseria meningitidis

Микобактерии
Возбудитель туберкулеза относится к семейству Mycobacteriaceae, роду Mycobacterium, виду M. Tuberculosis. Это тонкие, слегка изогнутые палочки, спор и капсул не образуют. Туберкулезная палочка тяже

Легионеллы
Legionella pneumophila является возбудителем болезни легионеров (питтсбургской пневмонии, лихорадки Понтиак), относится к семейству Legionellaceae, роду Legionella и вызывает поражения респираторно

Возбудитель сифилиса
Сифилис – венерическая антропонозная инфекционная болезнь, характеризующаяся первичным аффектом, высыпанием на коже и слизистых оболочках с последующим поражением различных органов

Гонококки
Гонорея – это острое или хроническое инфекционное заболевание человека, которое передается половым путем и характеризуется гнойным воспалением слизистой оболочки мочеполовых путей.

Возбудители риккетсиозов
Риккетсии относятся к семейству Rickettsiaceae, которое относится к классу альфа-1 протеобактерии и включает 3 рода: Rickettsia, Orientia, Ehrlichia. Род Coxiella исключен из семейства Rickettsiace

Туляремия - природно-очаговое заболевание человека и животных, которое характеризуется лихорадкой, интоксикацией и поражением лимфатических узлов
Возбудитель туляремии отнесен к роду Francisella, виду F. Tularensis. Вид F. Tularensis подразделяют на 3 географических подвида, отличающихся по антигенным свойствам и вирулентности: 1) голарктиче

Бруцеллы
Бруцеллез – антропозоонозное инфекционное заболевание, которое характеризуется интоксикацией, преимущественным поражением опорно-двигательного аппарата, нервной, сердечно-сосудистой, мочепо

Возбудитель сибирской язвы
Сибирская язва – антропозоонозная инфекционная болезнь, которая характеризуется тяжелой интоксикацией, поражением кожи, лимфатических узлов, других органов и высокой летальностью.

Возбудитель чумы
Чума – острая инфекционная природно-очаговая болезнь, относящаяся к группе карантинных инфекций, характеризующаяся тяжелой интоксикацией, лихорадкой, поражением кожи, лимфатических узлов, л

Лептоспиры
Лептоспироз – заболевание, которое характеризуется волнообразной лихорадкой, интоксикацией, поражением капилляров печени, почек, ЦНС. Возбудитель заболевания–

Микробиологическая диагностика
Материалом для исследования являются кровь, моча, СМЖ, а при летальных исходах – паренхиматозные органы, грудной и брюшной транссудат. В период лептоспиремии (1-я неделя заболевания) для о

Плазмодии малярии
Малярия –антропонозная протозойная трансмиссивная болезнь человека, возбудители которой передаются комарами рода Anopheles. Характеризуется преимущественным поражением ретикулогист

Лейшмании
Лейшманиозы -группа трансмиссивных болезней человека преимущественно зоонозной природы. Существует две группы лейшманиозов человека: висцеральные, характеризующиеся преимущественны

Возбудитель амебиаза
Амебиаз – протозойный антропоноз, в клинически выраженных случаях проявляющийся преимущественно язвенным поражением толстого отдела кишечника, а также развитием абсцессов в печени

Патогенные грибы
Грибы относятся к царству Fungi. Это многоклеточные или одноклеточные бесхлорофильные эукариотические микроорганизмы с клеточной стенкой. Грибы имеют ядро с ядерной оболочкой, клеточную стенку, цит

Микробиологическая диагностика
В зависимости от клинических проявлений материалом для исследования являются: 1. кожные чешуйки, волосы, ногти 2. кровь 3. мокрота 4. СМЖ 5. моча

Вирусы гриппа
Относятся к семейству ортомиксовирусов, роду инфлюэнцавирус. Выделяют вирусы гриппа типов А, В, С. Вирус гриппа имеет сферическую форму, диаметр 80-120нм. Нуклеокапсид спиральной симметрии. Геном в

Парагрипп. РС-вирусы
Вирус парагриппа и РС-вирус (респираторно-синцитиальный) относятся к семейству парамиксовирусов. Это вирусы сферической формы со спиральным типом симметрии. Размер вириона составляет 100-800нм. Име

Аденовирусы
Семейство аденовирусов включает в себя два рода – Mastadenovirus (вирусы млекопитающих, которые патогенны для человека) и Aviadenovirus (вирусы птиц); в состав первого входит около 80 видов (серова

Риновирусы
Относятся к семейству пикорнавирусы. Это семейство относится к безоболочечным вирусам, содержащих однонитевую плюс РНК. Диаметр вируса около 30нм, вирион состоит из икосаэдрического капсида, окружа

Реовирусы
Реовирусы относятся к семейству реовирусов. Вирион имеет сферическую форму (диаметр 70-85нм), двухслойный капсид икосаэдрического типа, оболочки нет. Геном представлен двунитевой фрагментированной

Вирусы кори и паротита
Вирус эпидемического паротита и вирус кори относятся к семейству парамиксовирусов. Вирион парамиксовирусов имеет сферическую форму, диаметр 150-300 нм, окружен оболочкой с гликопротеиновыми шипами.

Вирус герпеса
Семейство Герпесвирусы (Herpesviridae) включает 3 подсемейства: · альфагерпесвирусы (вирус простого герпеса тип 1, тип 2, вирус ветряной оспы – опоясывающего герпеса).

Вирус краснухи
Краснуха – вирусная инфекция, поражающая преимущественно детей в возрасте от 2 до 10 лет и характеризующаяся у них острым, но доброкачественным течением с умеренно выраженными лихо

Возбудитель натуральной оспы
Натуральная оспа –особо опасная высококонтагиозная инфекция, характеризующаясятяжелым течением, лихорадкой и обильной пустулезно-папулезной сыпью на коже и слизистых оболочках.

Вирус полиомиелита
Полиомиелит –острое инфекционное заболевание с поражением передних рогов спинного мозга, которое характеризуется развитием параличей с мышечной атрофией. Вирус относится к

ЕСНО-вирусы. Вирусы Коксаки
Относятся к семейству пикорнавирусов, роду энтеровирусов. Строение вириона такое же, как у вируса полиомиелита. ЕСНО вирусы выделены в особую группу кишечных вирусов вслед

Возбудитель ВИЧ-инфекции
ВИЧ-инфекция – длительно текущая инфекционная болезнь, развивающаяся в результате инфицирования вирусом иммунодефицита человека. При ВИЧ-инфекции прогрессирует поражение иммунной системы, п

Факторы патогенности
1. вирус обладает лимфотропностью, благодаря тому, что на лимфоцитах Т-хелперах существуют в норме рецепторы СД4, имеющие сродство к белку gp 120 ВИЧ. 2. поражает не только Т-хелперы, но и

Рабдовирусы
Бешенство (водобоязнь, гидрофобия- rabies, lysa, hydrophobia) – острая инфекционная болезнь, развивающаяся после укуса или ослюнения раны инфицированным животным, характеризующаяся поражением центр

Флавивирусы
Клещевой энцефалит – острое инфекционное заболевание, передающееся клещами, часто протекающее с поражением центральной нервной системы. Этиология. Вирус клещевого энцефали

Хантавирусы
ГЛПС –острое вирусное природно-очаговое заболевание в клинике которого ведущим является своеобразное поражение почек, сопровождающееся в разной степени выраженным геморрагическим с

Возбудители вирусных гепатитов
Вирусные гепатиты – группа инфекционных заболеваний, вызванных гепатотропными вирусами (А, В, С, Д, Е, G, TTV), при которых воспалительные и некротические процессы в печени определя

Вирус гепатита А
Вирус гепатита А относится к РНК-содержащим вирусам, семейству пикорнавирусов, роду гепатовирусов. Он относится к безоболочечным вирусам, содержащим однонитевую плюс РНК. Антигенная структ

Вирус гепатита В
Вирус гепатита В относится к семейству гепадновирусы, роду ортогепадновирус. Является сложноорганизованным ДНК-содержащим вирусом сферической формы, диаметр 42-47 нм. Он состоит из сердцевины, пост

Гепатита В и их интерпретация
HВsAг HВeAг анти- HВecor IgM анти HВecor сумм анти HВe Анти HВs HBV ДНК Тр

Вирус гепатита С
Вирус гепатита С относится к семейству флавивирусы, роду гепацивирус. Это сложные РНК геномные вирусы сферической формы, их диаметр 40-60 нм. Геном состоит из линейной однонитчатой плюс-нитевой РНК

Папилломавирусная инфекция
ВПЧ – мелкие ДНК-овые вирусы, характерная особенность которых заключается в способности вызывать пролиферацию эпителия кожи и/или слизистых оболочек. Они относятся к семейству паповавирусов. Сущест


© 2024
colybel.ru - О груди. Заболевания груди, пластическая хирургия, увеличение груди