21.10.2019

Энергия системы зарядов заряженного проводника и конденсатора. Энергия заряженного проводника и конденсатора. Объемная плотность энергии электрического поля. Постоянный электрический ток


1. Энергия системы неподвижных точечных зарядов. Электростатические силы взаимо­действия консервативны (см. § 57); следовательно, система зарядов обладает потенци­альной энергией. Найдем потенциальную энергию системы двух неподвижных точеч­ных зарядов Q 1 и Q 2 , находящихся на расстоянии r друг от друга. Каждый из этих зарядов в поле другого обладает потенциальной энергией (см. 58.2) и (58.5)):

где j 12 и j 21 - соответственно потенциалы, создаваемые зарядом Q 2 в точке нахожде­ния заряда Q 1 и зарядом Q 1 в точке нахождения заряда Q 2 . Согласно (58.5),

поэтому W 1 = W 2 = W и

Добавляя к системе из двух зарядов последовательно зарядыQ 3 , Q 4 , ... , можно убедиться в том, что в случае n неподвижных зарядов энергия взаимодействия системы точечных зарядов равна

(69.1)

где j i - потенциал, создаваемый в той точке, где находится заряд Q i , всеми зарядами, кроме i -го.

2. Энергия заряженного уединенного проводника. Пусть имеется уединенный провод­ник, заряд, емкость и потенциал которого соответственно равны Q, С, j. Увеличим заряд этого проводника на dQ. Для этого необходимо перенести заряд dQ из бесконеч­ности на уединенный проводник, затратив на это работу, равную

Чтобы зарядить тело от нулевого потенциала до j, необходимо совершить работу

(69.2)

Энергия заряженного проводника равна той работе, которую необходимо совер­шить, чтобы зарядить этот проводник:

Формулу (69.3) можно получить и из того, что потенциал проводника во всех его точках одинаков, так как поверхность проводника является эквипотенциальной. Пола­гая потенциал проводника равным j, из (69.1) найдем

где - заряд проводника.

3. Энергия заряженного конденсатора . Как всякий заряженный проводник, конден­сатор обладает энергией, которая в соответствии с формулой (69.3) равна

где Q - заряд конденсатора, С - его емкость, Dj - разность потенциалов между обкладками конденсатора.

Используя выражение (69.4), можно найтимеханическую (пондеромоторную ) силу, с которой пластины конденсатора притягивают друг друга. Для этого предположим, что расстояние х между пластинами меняется, например, на величину dx. Тогда действующая сила совершает работу dA=F dx вследствие уменьшения потенциальной энергии системы F dx = - dW, откуда

(69.5)

Подставив в (69.4) выражение (69.3), получим

(69.6)

Производя дифференцирование при конкретном значении энергии (см. (69.5) и (69.6)), найдем искомую силу:

где знак минус указывает, что сила F является силой притяжения.

4. Энергия электростатического поля. Преобразуем формулу (69.4), выражающую энергию плоского конденсатора посредством зарядов и потенциалов, воспользовав­шись выражением для емкости плоского конденсатора (C=e 0 eS/d ) и разности потенци­алов между его обкладками (Dj =Ed . Тогда

(69.7)

где V= Sd - объем конденсатора. Формула (69.7) показывает, что энергия конден­сатора выражается через величину, характеризующую электростатическое поле, - на­пряженность Е.

Объемная плотность энергии электростатического поля (энергия единицы объема)

(69.8)

Выражение (69.8) справедливо только дляизотропного диэлектрика, для которого выполняется соотношение (62.2):Р = æe 0 Е.

Формулы (69.4) и (69.7) соответственно связывают энергию конденсатора с зарядом на его обкладках и с напряженностью поля. Возникает, естественно, вопрос о локализа­ции электростатической энергии и что является ее носителем - заряды или поле? Ответ на этот вопрос может дать только опыт. Электростатика изучает постоянные во времени поля неподвижных зарядов, т. е. в ней поля и обусловившие их заряды неотделимы друг от друга. Поэтому электростатика ответить на поставленные воп­росы не может. Дальнейшее развитие теории и эксперимента показало, что переменные во времени электрические и магнитные поля могут существовать обособленно, независимо от возбудивших их зарядов, и распространяются в пространстве в виде электромагнитных волн, способных переносить энергию. Это убедительно подтверждает основ­ное положение теории близкодействия о том, что энергия локализована в поле и что носителем энергии является поле.

Глава 10. Постоянный электрический ток

§ 70. Электрический ток, сила и плотность тока

В электродинамике - разделе учения об электричестве, в котором рассматриваются явления и процессы, обусловленные движением электрических зарядов или макроско­пических заряженных тел, - важнейшим понятием является понятие электрического тока. Электрическим током называется любое упорядоченное (направленное) движение электрических зарядов. В проводнике под действием приложенного электрического поля Е свободные электрические заряды перемещаются: положительные - по полю, отрицательные - против поля (рис. 146, а), т. е. в проводнике возникает электричес­кий ток, называемый током проводимости . Если же упорядоченное движение электрических зарядов осуществляется перемещением в пространстве заряженного макроскопического тела (рис. 146, б), то возникает так называемый конвекционный ток .

Для возникновения и существования электрического тока необходимо, с одной стороны, наличие свободных носителей тока - заряженных частиц, способных переме­щаться упорядоченно, а с другой - наличие электрического поля, энергия которого, каким-то образом восполняясь, расходовалась бы на их упорядоченное движение. За направление тока условно принимают направление движения положительных зарядов.

Количественной мерой электрического тока служит сила тока I скалярная физи­ческая величина, определяемая электрическим зарядом, проходящим через поперечное сечение проводника в единицу времени:

Если сила тока и его направление не изменяются со временем, то такой ток называется постоянным . Для постоянного тока

где Q - электрический заряд, проходящий за время t через поперечное сечение провод­ника. Единица силы тока - ампер (А).

Физическая величина, определяемая силой тока, проходящего через единицу площа­ди поперечного сечения проводника, перпендикулярного направлению тока, называется плотностью тока:

Выразим силу и плотность тока через скорость áv ñ упорядоченного движения зарядов в проводнике. Если концентрация носителей тока равна n и каждый носитель имеет элементарный заряд е (что не обязательно для ионов), то за время dt через поперечное сечение S проводника переносится заряд dQ=ne ávñ S dt. Сила тока

а плотность тока

(70.1)

Плотность тока - вектор, ориентированный по направлению тока, т. е. направление вектора j совпадает с направлением упорядоченного движения положительных зарядов. Единица плотности тока - ампер на метр в квадрате (А/м 2).

Сила тока сквозь произвольную поверхность S определяется как поток вектора j , т. е.

(70.2)

где dS =n dS (n - единичный вектор нормали к площадке dS, составляющей с век­тором j угол a).

§ 71. Сторонние силы. Электродвижущая сила и напряжение

Если в цепи на носители тока действуют только силы электростатического поля, то происходит перемещение носителей (они предполагаются положительными) от точек с большим потенциалом к точкам с меньшим потенциалом. Это приведет к выравнива­нию потенциалов во всех точках цепи и к исчезновению электрического поля. Поэтому для существования постоянного тока необходимо наличие в цепи устройства, способ­ного создавать и поддерживать разность потенциалов за счет работы сил неэлект­ростатического происхождения. Такие устройства называютсяисточниками тока. Силы неэлектростатического происхождения, действующие на заряды со стороны источников тока, называютсясторонними.

Природа сторонних сил может быть различной. Например, в гальванических элементах они возникают за счет энергии химических реакций между электродами и электролитами; в генераторе - за счет механической энергии вращения ротора генератора и т. п. Роль источника тока в электрической цепи, образно говоря, такая же, как роль насоса, который необходим для перекачивания жидкости в гидравлической системе. Под действием создаваемого поля сторонних сил электрические заряды движутся внутри источника тока против сил электростатического поля, благодаря чему на концах цепи поддерживается разность потенциалов и в цепи течет постоянный электрический ток.

Сторонние силы совершают работу по перемещению электрических зарядов. Физи­ческая величина, определяемая работой, совершаемой сторонними силами при переме­щении единичного положительного заряда, называетсяэлектродвижущей силой (э.д.с.), действующей в цепи:

(71.1)

Эта работа производятся за счет энергии, затрачиваемой в источнике тока, поэтому величину можно также называть электродвижущей силой источника тока, включен­ного в цепь. Часто, вместо того чтобы сказать: «в цепи действуют сторонние силы», говорят: «в цепи действует э.д.с.», т. е. термин «электродвижущая сила» употребляет­ся как характеристика сторонних сил. Э.д.с., как и потенциал, выражается в вольтах (ср. (84.9) и (97.1)).

Сторонняя сила F ст, действующая на заряд Q 0 , может быть выражена как

где Е ст - напряженность поля сторонних сил. Работа же сторонних сил по перемещению заряда Q 0 на замкнутом участке цепи равна

(71.2)

Разделив (71.2) на Q 0 , получим выражение для э. д. с., действующей в цепи:

т. е. э.д.с., действующая в замкнутой цепи, может быть определена как циркуляция вектора напряженности поля сторонних сил. Э.д.с., действующая на участке 1 -2 , равна

(71.3)

На заряд Q 0 помимо сторонних сил действуют также силы электростатического поля F e =Q 0 E . Таким образом, результирующая сила, действующая в цепи на заряд Q 0 , равна

Работа, совершаемая результирующей силой над зарядом Q 0 на участке 1 -2 , равна

Используя выражения (97.3) и (84.8), можем записать

(71.4)

Для замкнутой цепи работа электростатических сил равна нулю (см. § 57), поэтому в данном случае

Напряжением U на участке 1 -2 называется физическая величина, определяемая работой, совершаемой суммарным полем электростатических (кулоновских) и сторон­них сил при перемещении единичного положительного заряда на данном участке цепи. Таким образом, согласно (71.4),

Понятие напряжения является обобщением понятия разности потенциалов: напря­жение на концах участка цепи равно разности потенциалов в том случае, если на этом участке не действует Э.д.с., т. е. сторонние силы отсутствуют.

§ 72. Закон Ома. Сопротивление проводников

Немецкий физик Г. Ом (1787;-1854) экспериментально установил, что сила тока I , текущего по однородному металлическому проводнику (т. е. проводнику, в котором не действуют сторонние силы), пропорциональна напряжению U на концах проводника:

(72.1)

где R - электрическое сопротивление проводника.

Уравнение (72.1) выражает закон Ома для участка цепи (не содержащего источника тока): сала тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротив­лению проводника. Формула (72.1) позволяет установить единицу сопротивления - ом (Ом): 1 Ом - сопротивление такого проводника, в котором при напряжении 1 В течет постоянный ток 1 А.

Величина

называется электрической проводимостью проводника. Единица проводимости - сименс (См): 1 См - проводимость участка электрической цепи сопротивлением 1 Ом.

Сопротивление проводников зависит от его размеров и формы, а также от матери­ала, из которого проводник изготовлен. Для однородного линейного проводника сопротивление R прямо пропорционально его длине l и обратно пропорционально площади его поперечного сечения S:

(72.2)

где r - коэффициент пропорциональности, характеризующий материал проводника и называемыйудельным электрическим сопротивлением. Единица удельного элект­рического сопротивления - ом×метр (Ом×м). Наименьшим удельным сопротивлением обладают серебро (1,6×10 –8 Ом×м) и медь (1,7×10 –8 Ом×м). На практике наряду с медными применяются алюминиевые провода. Хотя алюминий и имеет большее, чем медь, удельное сопротивление (2,6×10 –8 Ом×м), но зато обладает меньшей плотностью по сравнению с медью.

Закон Ома можно представить в дифференциальной форме. Подставив выражение для сопротивления (72.2) в закон Ома (72.1), получим

(72.3)

где величина, обратная удельному сопротивлению,

называетсяудельной электрической проводимостью вещества проводника. Ее едини­ца - сименс на метр (См/м).

Учитывая, что U /l = Е - напряженность электрического поля в проводнике, I/S = j - плотность тока, формулу (72.3) можно записать в виде

(72.4)

Так как в изотропном проводнике носители тока в каждой точке движутся в направле­нии вектора Е , то направления j и Е совпадают. Поэтому формулу (98.4) можно записать в векторном виде

Выражение (72.5) - закон Ома в дифференциальном форме , связывающий плотность тока в любой точке внутри проводника с напряженностью электрического поля в этой же точке. Это соотношение справедливо и для переменных полей.

Опыт показывает, что в первом приближении изменение удельного сопротивления, а значит и сопротивления, с температурой описывается линейным законом:

где r и r 0 , R и R 0 - соответственно удельные сопротивления и сопротивления провод­ника при t и 0°С, a -температурный коэффициент сопротивления, для чистых металлов (при не очень низких температурах) близкий к 1/273 К –1 . Следовательно, температур­ная зависимость сопротивления может быть представлена в виде

где Т - термодинамическая температура.

Качественный ход температурной зависимости сопротивления металла представлен на рис. 147 (кривая 1 ). Впоследствии было обнаружено, что сопротивление многих металлов (например, Al, Pb, Zn и др.) и их сплавов при очень низких температурах T K (0,14-20 К), называемыхкритическими, характерных для каждого вещества, скачко­образно уменьшается до нуля (кривая 2 ), т. е. металл становится абсолютным провод­ником. Впервые это явление, названное сверхпроводимостью, обнаружено в 1911 г. Г. Камерлинг-Оннесом для ртути. Явление сверхпроводимости объясняется на основе квантовой теории. Практическое использование сверхпроводящих материалов (в об­мотках сверхпроводящих магнитов, в системах памяти ЭВМ и др.) затруднено из-за их низких критических температур. В настоящее время обнаружены и активно исследуют­ся керамические материалы, обладающие сверхпроводимостью при температуре выше 100 К.

На зависимости электрического сопротивления металлов от температуры основано действиетермометров сопротивления, которые позволяют по градуированной взаимо­связи сопротивления от температуры измерять температуру с точностью до 0,003 К. Термометры сопротивления, в которых в качестве рабочего вещества используются полупроводники, изготовленные по специальной технологии, называютсятермисторами. Они позволяют измерять температуры с точностью до миллионных долей кельвин.

§ 73. Работа и мощность тока. Закон Джоуля - Ленца

Рассмотрим однородный проводник, к концам которого приложено напряжение U. За "время dt через сечение проводника переносится заряд dq=I dt. Так как ток представляет собой перемещение заряда dq под действием электрического поля, то, по формуле (84.6), работа тока

(73.1)

Если сопротивление проводника R, то, используя законОма (72.1), получим

(73.2)

Из (73.1) и (73.2) следует, что мощность тока

(73.3)

Если сила тока выражается в амперах, напряжение - в вольтах, сопротивле­ние - в омах, то работа тока выражается в джоулях, а мощность - в ваттах. На практике применяются также внесистемные единицы работы тока: ватт-час (Вт×ч) и киловатт-час (кВт×ч). 1 Вт×ч - работа тока мощностью 1 Вт в течение 1 ч; 1 Вт×ч=3600 Bт×c=3,6×10 3 Дж; 1 кВт×ч=10 3 Вт×ч= 3,6×10 6 Дж.

Если ток проходит по неподвижному металлическому проводнику, то вся работа тока идет на его нагревание и, по закону сохранения энергии,

(73.4)

Таким образом, используя выражения (73.4), (73.1) и (73.2), получим

(73.5)

Выражение (73.5) представляет собойзакон Джоуля -Ленца, экспериментально уста­новленный независимо друг от друга Дж. Джоулем и Э. X. Ленцем.

Выделим в проводнике элементарный цилиндрический объем dV= dS dl (ось цилин­дра совпадает с направлением тока), сопротивление которого По закону Джоуля - Ленца, за время dt в этом объеме выделится теплота

Количество теплоты, выделяющееся за единицу времени в единице объема, называется удельной тепловой мощностью тока. Она равна

(73.6)

Используя дифференциальную форму законаОма (j=gЕ) и соотношение r= 1/g, получим

(73.7)

Формулы (73.6) и (73.7) являются обобщенным выражениемзакона Джоуля-Ленца в дифференциальной форме, пригодным для любого проводника.

Тепловое действие тока находит широкое применение в технике, которое началось с открытия в 1873 г. русским инженером А. Н. Лодыгиным (1847-1923) лампы накаливания. На нагревании проводников электрическим током основано действие элект­рических муфельных печей, электрической дуги (открыта русским инженером В. В. Петровым (1761-1834)), контактной электросварки, бытовых электронагрева­тельных приборов и т. д.

§ 74. Закон Ома для неоднородного участка цепи

Мы рассматривали закон Ома (см. (98.1)) для однородного участка цепи, т. е. такого, в котором не девствует э.д.с. (не действуют сторонние силы). Теперь рассмотрим неоднородный участок цепи, где действующую э.д.с. на участке 1 -2 обозначим через а приложенную на концах участка разность потенциалов - через j 1 -j 2 .

Если ток проходит по неподвижным проводникам, образующим участок 1-2, то работа А 12 всех сил (сторонних и электростатических), совершаемая над носителями тока, по закону сохранения и превращения энергии равна теплоте, выделяющейся на участке. Работа сил, совершаемая при перемещении заряда Q 0 на участке 1 -2 , согласно (71.4),

Э.д.с. как и сила тока I , - величина скалярная. Ее необходимо брать либо с положительным, либо с отрицательным знаком в зависимости от знака работы, совершаемой сторонними силами. Если э.д.с. способствует движению положительных зарядов в выбранном направлении (в направлении 1-2 ), то > 0. Если э.д.с. препятствует движению положительных зарядов в данном направлении, то < 0.

За время t в проводнике выделяется теплота (см. (73.5))

Из формул (74.1) и (74.2) получим

(74.4)

Выражение (74.3) или (74.4) представляет собойзакон Ома для неоднородного участка цепи в интегральной форме, который являетсяобобщенным законом Ома.

Если на данном участке цепи источник тока отсутствует (=0), то из (74.4) приходим к закону Ома для однородного участка цепи (72.1):

(при отсутствии сторонних сил напряжение на концах участка равно разности потенци­алов (см. § 71)).

Если же электрическая цепь замкнута, то выбранные точки 1 и 2 со­впадают, j 1 =j 2 ; тогда из (74.4) получаем закон Ома для замкнутой цепи:

где - э.д.с., действующая в цепи, R - суммарное сопротивление всей цепи. В общем случае R=r+R 1 , где r - внутреннее сопротивление источника тока, R 1 - со­противление внешней цепи. Поэтому законОма для замкнутой цепи будет иметь вид

Если цепь разомкнута и, следовательно, в ней ток отсутствует (I = 0), то из закона Ома (74.4) получим, что =j 1 -j 2 , т. е. э.д.с., действующая в разомкнутой цепи, равна разности потенциалов на ее концах. Следовательно, для того чтобы найти э.д.с. источника тока, надо измерить разность потенциалов на егоклеммах при разомкнутой цепи.

Согласно определению потенциала (12.17), энергию взаимодействия системы п неподвижных точечных зарядов (/ = 1 ,п) можно определить

где ф, - потенциал, создаваемый в той точке, где находится заряд, всеми зарядами, кроме /-го. Если заряд распределен в пространстве непрерывно с объемной плотностью р = р(г), то элемент объема dV будет иметь заряд dq - pdV. Тогда энергия системы определяется уравнением

|

где V - весь объем, занимаемый зарядом.

Определим энергию заряженного уединенного проводника произвольной формы, заряд, емкость и потенциал которого равны соответственно q, С, ф. Потенциал во всех точках уединенного проводника одинаков. Зная ф, найдем его энергию как

или, используя С = q/q> (формула (12.40)), найдем

Можно доказать, что электрическая энергия системы из п неподвижных заряженных проводников

где OjdS, поскольку в проводнике избыточные заряды распределе-

ны по его внешней поверхности, о, - поверхностная плотность сторонних зарядов на малом элементе поверхности /-го проводника площадью dS. Интегрирование проводится по всей эквипотенциальной внешней поверхности проводника площадью 5). Таким образом, формулу (13.26в) перепишем в виде

где Sj - поверхность заряженных проводников.

В общем случае электрическую энергию любой системы заряженных неподвижных тел - проводников и непроводников - можно найти по формуле

где ф - потенциал результирующего поля всех сторонних и связанных зарядов в точках малых элементов dS и dV заряженных поверхностей и объемов; аир- соответственно поверхностная и объемная плотности сторонних зарядов. Интегрирование проводится по всем заряженным поверхностям S и по всему заряженному объему Стел системы.

Согласно формуле (13.28), если заряд распределен непрерывно, то необходимо разбить заряд каждого тела на бесконечно малые элементы odS или рdV и каждый из них умножить на потенциал ф, создаваемый не только зарядами других объектов, но и элементами заряда этого тела.

Расчет по формуле (13.28) позволяет вычислить полную энергию взаимодействия, поскольку получаем величину, равную сумме энергий взаимодействия заряженных неподвижных тел и их собственных энергий.

Собственная энергия заряженного тела - это энергия взаимодействия друг с другом элементов данного заряженного тела.

Энергию W можно трактовать как потенциальную энергию системы заряженных тел, обусловленную кулоновскими силами их взаимодействия. Влияние среды на энергию системы при неизменном распределении сторонних зарядов таково, что значения потенциалов ф в разных диэлектриках различны. Например, в однородном, изотропном диэлектрике, заполняющем все поле, ф меньше, чем в вакууме, в? раз.

Из формулы (13.28) можно получить также формулу для электрической энергии конденсатора (р = 0):

где -S") и xSj - площади обкладок конденсатора; q = CU .

Изучение переменных электромагнитных полей (тема 20) показало, что они могут существовать отдельно от породивших их систем электрических зарядов и токов, а их распространение в пространстве в виде электромагнитных волн связано с переносом энергии. Так, было доказано, что электромагнитное поле обладает энергией. Соответственно и электростатическое поле обладает энергией, которая распределена в поле с объемной плотностью w e .

Объемная плотность энергии электростатического поля w e в случае однородных полей вычисляется по формуле

Для неоднородных полей справедливо выражение

где dW - энергия малого элемента dV объема поля, в пределах которого величину объемной плотности электростатического поля w e можно считать всюду одинаковой.

Единица объемной плотности энергии электрического поля в СИ - джоуль на метр в кубе (Дж/м 3).

Объемная плотность энергии электростатического поля в изотропной диэлектрической среде (или вакууме)

где D - электрическое смешение. Согласно уравнению (13.12а), D = ce 0 E .

Необходимо отметить, что формулы (13.25) - (13.28а) справедливы для потенциальных электростатических полей, т.е. полей неподвижных заряженных тел.

Для переменных непотенциальных электрических полей понятие потенциала и построенные на его основе выражения для энергии лишены смысла. Эти поля обладают энергией, которую можно найти, пользуясь универсальной формулой, справедливой как для однородного, так и для неоднородного поля:

где V - объем, занимаемый полем.

Энергия поляризованного диэлектрика. Как следует из формулы (13.31), объемная плотность энергии электростатического поля в вакууме

При той же напряженности Е поля в диэлектрической среде объемная плотность энергии поля в г раз больше, чем в вакууме:

Поэтому объемная плотность энергии и> диэл поляризованного диэлектрика определяется как

где Р = х? о^ - поляризованность диэлектрика; х - диэлектрическая восприимчивость диэлектрика.

Пондеромоторные силы. Пондеромоторные силы - это механические силы, которые действуют на заряженные тела, помещенные в электрическое поле. Под действием данных сил поляризованный диэлектрик деформируется - это явление называется электрострикцией. Причиной возникновения пондеромоторных сил является действие неоднородного электрического поля на дипольные молекулы поляризованного диэлектрика. Эти силы обусловлены неоднородностью макрополя, а также микрополя, создаваемого в основном ближайшими молекулами поляризованного диэлектрика.

Рассмотрим, например, заряженный плоский конденсатор (см. рис. 12.18), отключенный от источника (постоянные заряды на обкладках). Введем в него диэлектрик с диэлектрической проницаемостью z таким образом, чтобы между ним и пластинами конденсатора не было даже тонкого зазора (иначе силы электрострикции не передавались бы пластинам и сила взаимодействия между пластинами не менялась бы при введении диэлектрика). Под действием пондеромоторной силы обкладки конденсатора сжимают пластину диэлектрика, помещенного между ними, и в диэлектрике возникает давление.

Если расстояние между пластинами уменьшается на dx, то механическая работа

где F x - проекция силы притяжения F между пластинами конденсатора на положительное положение осиХ. Изменение энергии поля

где S - площадь поверхности обкладки конденсатора.

Согласно закону сохранения энергии, механическая работа сил электрического поля равна уменьшению его энергии. Тогда пондеромоторная сила (сила, действующая на единицу поверхности пластины)

т.е. будет равна объемной плотности энергии электрического поля.

Энергия заряженного проводника. Поверхность проводника является эквипотенциальной. Поэтому потенциалы тех точек, в которых находятся точечные заряды dq , одинаковы и равны потенциалу проводника. Заряд q , находящийся на проводнике, можно рассматривать как систему точечных зарядов dq . Тогда энергия заряженного проводника = Энергия заряженного конденсатора. Пусть потенциал обкладки конденсатора, на которой находится заряд +q , равен , а потенциал обкладки, на которой находится заряд -q , равен . Энергия такой системы =

Энергия электрического поля. Энергию заряженного конденсатора можно выразить через величины, характеризующие электрическое поле в зазоре между обкладками. Сделаем это на примере плоского конденсатора. Подстановка выражения для емкости в формулу для энергии конденсатора дает = = Oбъемная плотность энегии электрического поля равна C учетом соотношения D= можно записать ; Зная плотность энергии поля в каждой точке, можно найти энергию поля , заключенного в любом объеме V . Для этого нужно вычислить интеграл: W=

30. Электромагнитная индукция. Опыты Фарадея, правило Ленца, формула для ЭДС электромагнитной индукции, трактовка Максвелла явления электромагнитной индукции Явление электромагнитной индукции открыто М. Фарадеем.Оно заключается в возникновении электрического тока в замкнутом проводящем контуре при изменении во времени магнитного потока, пронизывающего контур. Магнитным потоком Φ через площадь S контура называют величину Ф=B*S*cosaгде B(Вб)– модуль вектора магнитной индукции, α – угол между вектором B и нормалью n к плоскости контура. Фарадей экспериментально установил, что при изменении магнитного потока в проводящем контуре возникает ЭДС индукции, равная скорости изменения магнитного потока через поверхность, ограниченную контуром, взятой со знаком минус: Эта формула носит название закона Фарадея. Опыт показывает, что индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток. Это утверждение называется правилом Ленца. Правило Ленца имеет глубокий физический смысл – оно выражает закон сохранения энергии.1)Магнитный поток изменяется вследствие перемещения контура или его частей в постоянном во времени магнитном поле. Это случай, когда проводники, а вместе с ними и свободные носители заряда, движутся в магнитном поле. Возникновение ЭДС индукции объясняется действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца играет в этом случае роль сторонней силы.Рассмотрим в качестве примера возникновение ЭДС индукции в прямоугольном контуре, помещенном в однородное магнитное поле В перпендикулярное плоскости контура. Пусть одна из сторон контура длиной L скользит со скоростью v по двум другим сторонам.На свободные заряды на этом участке контура действует сила Лоренца. Одна из составляющих этой силы, связанная с переносной скоростью v зарядов, направлена вдоль проводника. Она играет роль сторонней силы. Ее модуль равен Fл=evB. Работа силы F Л на пути L равна A=Fл*L=evBL.По определению ЭДС. В других неподвижных частях контура сторонняя сила равна нулю. Соотношению для инд можно придать привычный вид. За время Δt площадь контура изменяется на ΔS = lυΔt. Изменение магнитного потока за это время равно ΔΦ = BlυΔt. Следовательно, Для того, чтобы установить знак в формуле, нужно выбрать согласованные между собой по правилу правого буравчика направление нормали n и положительное направление обхода контура L Если это сделать, то легко прийти к формуле Фарадея.



Если сопротивление всей цепи равно R, то по ней будет протекать индукционный ток, равный I инд = инд /R. За время Δt на сопротивлении R выделится джоулево тепло .Возникает вопрос: откуда берется эта энергия, ведь сила Лоренца работы не совершает! Этот парадокс возник потому, что мы учли работу только одной составляющей силы Лоренца. При протекании индукционного тока по проводнику, находящемуся в магнитном поле, на свободные заряды действует еще одна составляющая силы Лоренца, связанная с относительной скоростью движения зарядов вдоль проводника. Эта составляющая ответственна за появление силы Ампера. модуль силы Ампера равен F A = I B l. Сила Ампера направлена навстречу движению проводника; поэтому она совершает отрицательную механическую работу. За время Δt эта работа . Движущийся в магнитном поле проводник, по которому протекает индукционный ток, испытывает магнитное торможение . Полная работа силы Лоренца равна нулю. Джоулево тепло в контуре выделяется либо за счет работы внешней силы, которая поддерживает скорость проводника неизменной, либо за счет уменьшения кинетической энергии проводника.2. Вторая причина изменения магнитного потока, пронизывающего контур, – изменение во времени магнитного поля при неподвижном контуре. В этом случае возникновение ЭДС индукции уже нельзя объяснить действием силы Лоренца. Электроны в неподвижном проводнике могут приводиться в движение только электрическим полем. Это электрическое поле порождается изменяющимся во времени магнитным полем. Работа этого поля при перемещении единичного положительного заряда по замкнутому контуру равна ЭДС индукции в неподвижном проводнике. Следовательно, электрическое поле, порожденное изменяющимся магнитным полем, не являетсяпотенциальным . Его называют вихревым электрическим полем . Представление о вихревом электрическом поле было введено в физику великим английским физиком Дж. Максвеллом в 1861 г.Явление электромагнитной индукции в неподвижных проводниках, возникающее при изменении окружающего магнитного поля, также описывается формулой Фарадея. Таким образом, явления индукции в движущихся и неподвижных проводниках протекают одинаково, но физическая причина возникновения индукционного тока оказывается в этих двух случаях различной: в случае движущихся проводников ЭДС индукции обусловлена силой Лоренца; в случае неподвижных проводников ЭДС индукции является следствием действия на свободные заряды вихревого электрического поля, возникающего при изменении магнитного поля.

Энергия системы зарядов, уединенного проводника, конденсатора.

1. Энергия системы неподвижных точечных зарядов . Как мы уже знаем, электростатические силы взаимодействия консервативны; значит, система зарядов обладает потенциальной энергией. Будем искать потенциальную энергию системы двух неподвижных точечных зарядов Q 1 и Q 2 , которые находятся на расстоянии r друг от друга. Каждый из этих зарядов в поле другого обладает потенциальной энергией (используем формулу потенциала уединенного заряда): где φ 12 и φ 21 - соответственно потенциалы, которые создаются зарядом Q 2 в точке нахождения заряда Q 1 и зарядом Q 1 в точке нахождения заряда Q 2 . Согласно, и поэтому W 1 = W 2 = W и Добавляя к нашей системе из двух зарядов последовательно заряды Q 3 , Q 4 , ... , можно доказать, что в случае n неподвижных зарядов энергия взаимодействия системы точечных зарядов равна (1) где φ i - потенциал, который создается в точке, где находится заряд Q i , всеми зарядами, кроме i-го. 2. Энергия заряженного уединенного проводника . Рассмотрим уединенный проводник, заряд, потенциал и емкость которого соответственно равны Q, φ и С. Увеличим заряд этого проводника на dQ. Для этого необходимо перенести заряд dQ из бесконечности на уединенный проводник, при этом затратив на это работу, которая равна ");?>" alt="элементарная работа сил электрического поля заряженного проводника"> Чтобы зарядить тело от нулевого потенциала до φ, нужно совершить работу (2) Энергия заряженного проводника равна той работе, которую необходимо совершить, чтобы зарядить этот проводник: (3) Формулу (3) можно также получить и условия, что потенциал проводника во всех его точках одинаков, так как поверхность проводника является эквипотенциальной. Если φ - потенциал проводника, то из (1) найдем где Q=∑Q i - заряд проводника. 3. Энергия заряженного конденсатора . Конденсатор состоит из заряженных проводников поэтому обладает энергией, которая из формулы (3) равна (4) где Q - заряд конденсатора, С - его емкость, Δφ - разность потенциалов между обкладками конденсатора. Используя выражение (4), будем искать механическую (пондеромоторную) силу , с которой пластины конденсатора притягиваются друг к другу. Для этого сделаем предположение, что расстояние х между пластинами изменилось на величину dx. Тогда действующая сила совершает работу dA=Fdx вследствие уменьшения потенциальной энергии системы Fdx = - dW, откуда (5) Подставив в (4) выражение для емкости плоского конденсатора, получим (6) Продифференцировав при фиксированном значении энергии (см. (5) и (6)), получим искомую силу: где знак минус указывает, что сила F является силой притяжения. 4. Энергия электростатического поля . Используем выражение (4), которое выражает энергию плоского конденсатора посредством зарядов и потенциалов, и спользуя выражением для емкости плоского конденсатора (C=ε 0 εS/d) и разности потенциалов между его обкладками (Δφ=Ed. Тогда (7) где V= Sd - объем конденсатора. Формула (7) говорит о том, что энергия конденсатора выражается через величину, характеризующую электростатическое поле, - напряженность Е. Объемная плотность энергии электростатического поля (энергия единицы объема) (8) Выражение (8) справедливо только для изотропного диэлектрика, для которого выполняется соотношение: Р = æε 0 Е . Формулы (4) и (7) соответственно выражают энергию конденсатора через заряд на его обкладках и через напряженность поля. Возникает вопрос о локализации электростатической энергии и что является ее носителем - заряды или поле? Ответ на этот вопрос может дать только опыт. Электростатика занимается изучением постоянных во времени поля неподвижных зарядов, т. е. в ней поля и попродившие их заряды неотделимы друг от друга. Поэтому электростатика ответить на данный вопрос не может. Дальнейшее развитие теории и эксперимента показало, что переменные во времени электрические и магнитные поля могут существовать отдельно, независимо от возбудивших их зарядов, и распространяются в пространстве в виде электромагнитных волн, которые способны переносить энергию. Это убедительно подтверждает основное положение теории близкодействия о том, что энергия локализована в поле и что носителем энергии является поле .

1. Энергия системы неподвижных точечных заря-до в. Электростатические силы взаимодействия консервативны, следователь­но, система зарядов обладает потенциальной энергией. Найдем потенциальную энергию системы двух неподвижных точечных зарядов Q 1 и Q 2 , находящихся на расстоянии г друг от друга. Каждый из этих зарядов в поле другого обладает потенциальной энергией:

где и - соответственно потенциалы, создаваемые зарядом Q 2 в точке на­хождения заряда Q 1 и зарядом Q 1 в точке нахождения заряда Q 2

и

Поэтому W 1 =W 2 =W и W=Q 1 =Q 2 =1/2(Q 1 + Q 2 ). Добавляя к системе из двух зарядов последовательно заряды Q 3 , Q 4 ..., можно убедиться в
том, что в случае n неподвижных зарядов энергия взаимодействия системы то­чечных зарядив равна

Потенциал, создаваемый в той точке, где находится заряд Q i , всеми зарядами, кроме i-го.

2 Энергия заряженного уединенного проводника. Пусть имеется уединенный проводник, заряд, емкость и потенциал которого соответственно равны Q, С, . Увеличим заряд этого проводника на dQ. Для этого необходимо перенести заряд dQ из бесконечности на уединенный про­водник, затратив на это работу равную

Чтобы зарядить тело от нулевого потенциала до , необходимо совершить работу

, (1.17.2)

Энергия заряженного проводника равна той работе, которую необходимо совершить, чтобы зарядить этот проводник.

(1.17.3)

Формулу (1.17.2) можно получить и из того, что потенциал проводника во всех его точках одинаков, гак как поверхность проводника является эквипотен­циальной. Полагая потенциал проводника равным , из (1.17.1) найдем

где Q = , - заряд проводника.

3. Энергия заряженного конденсатора. Как всякий заряженный проводник, конденсатор обладает энергией, которая в соответствии с формулой (1.17.3) равна

, (1.17.4)

где Q - заряд конденсатора, С - его емкость, ()- разность потенциалов моыц обкладками.

4. Энергия электростатического поля. Преобразуем формулу (1.17.4), выражающую энергию плоского конденсатора посредством зарядов и потенциалов, воспользовавшись выражением для емкости плоского конденсатора () и разности потенциалов между его обкладками . Тогда получим

(1.17.5)

где V = Sd - объем конденсатора. Формула (1.17.5) показывает, что энергия конденсатора выражается через величину, характеризующую электростатическое поле, - напряженность Е.

Объемная плотность энергии электростатического поля (энергия единицы объема)

(1.17.6)

Выражение (1.46) справедливо только для изотропного д и э л с к i р и к а, для которого выполняется соотношение:

Формулы (1.17.4) и (1.17.5) соответственно связывают энергию конденсату,> с зарядом на его обкладках и напряженностью поля. Возникает, естественно, вопрос о локализации электростатической энергии и что является ее носителем- заряды или поле? Ответ на этот вопрос может дать только опыт. Электроста­тика изучает постоянные во времени поля неподвижных зарядов, т.е. в ней поля и обусловившие их заряды неотделимы друг от друга. Поэтому электростатика ответить на поставленные вопросы не может. Дальнейшее развитие теории и эксперимента показало, что переменные во времени электрические и магнитные поля могут существовать обособленно, независимо от возбудивших их за­
рядов, и распространяются в пространстве в виде электромагнитных волн, спо­собных переносить энергию. Это убедительно подтверждает основное положе­ние теории близкодействия о локализации энергии в поле и то, что поле является ее носителем.


© 2024
colybel.ru - О груди. Заболевания груди, пластическая хирургия, увеличение груди